Edy Tonnizam Mohamad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11806617/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunnelling and Underground Space Technology, 2017, 63, 29-43.	6.2	307
2	Ground vibration prediction in quarry blasting through an artificial neural network optimized by imperialist competitive algorithm. Bulletin of Engineering Geology and the Environment, 2015, 74, 873-886.	3.5	209
3	Improvement of Problematic Soils with Biopolymer—An Environmentally Friendly Soil Stabilizer. Journal of Materials in Civil Engineering, 2017, 29, .	2.9	207
4	Blast-induced air and ground vibration prediction: a particle swarm optimization-based artificial neural network approach. Environmental Earth Sciences, 2015, 74, 2799-2817.	2.7	162
5	Prediction of the unconfined compressive strength of soft rocks: a PSO-based ANN approach. Bulletin of Engineering Geology and the Environment, 2015, 74, 745-757.	3.5	162
6	An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young's modulus: a study on Main Range granite. Bulletin of Engineering Geology and the Environment, 2015, 74, 1301-1319.	3.5	154
7	Three hybrid intelligent models in estimating flyrock distance resulting from blasting. Engineering With Computers, 2019, 35, 243-256.	6.1	145
8	Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arabian Journal of Geosciences, 2016, 9, 1.	1.3	136
9	Estimation of the TBM advance rate under hard rock conditions using XGBoost and Bayesian optimization. Underground Space (China), 2021, 6, 506-515.	7.5	129
10	A combination of the ICA-ANN model to predict air-overpressure resulting from blasting. Engineering With Computers, 2016, 32, 155-171.	6.1	123
11	Indirect measure of shale shear strength parameters by means of rock index tests through an optimized artificial neural network. Measurement: Journal of the International Measurement Confederation, 2014, 55, 487-498.	5.0	115
12	Predicting tunnel boring machine performance through a new model based on the group method of data handling. Bulletin of Engineering Geology and the Environment, 2019, 78, 3799-3813.	3.5	114
13	Application of deep neural networks in predicting the penetration rate of tunnel boring machines. Bulletin of Engineering Geology and the Environment, 2019, 78, 6347-6360.	3.5	108
14	A Novel Approach for Blast-Induced Flyrock Prediction Based on Imperialist Competitive Algorithm and Artificial Neural Network. Scientific World Journal, The, 2014, 2014, 1-11.	2.1	106
15	Feasibility of ICA in approximating ground vibration resulting from mine blasting. Neural Computing and Applications, 2018, 29, 457-465.	5.6	105
16	Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances. Engineering With Computers, 2016, 32, 189-206.	6.1	104
17	Application of two intelligent systems in predicting environmental impacts of quarry blasting. Arabian Journal of Geosciences, 2015, 8, 9647-9665.	1.3	103
18	Neuro-fuzzy technique to predict air-overpressure induced by blasting. Arabian Journal of Geosciences, 2015, 8, 10937-10950.	1.3	102

#	Article	IF	CITATIONS
19	Genetic programming and gene expression programming for flyrock assessment due to mine blasting. International Journal of Rock Mechanics and Minings Sciences, 2016, 88, 254-264.	5.8	92
20	An optimized ANN model based on genetic algorithm for predicting ripping production. Neural Computing and Applications, 2017, 28, 393-406.	5.6	85
21	A combination of artificial bee colony and neural network for approximating the safety factor of retaining walls. Engineering With Computers, 2019, 35, 647-658.	6.1	78
22	Estimation of air-overpressure produced by blasting operation through a neuro-genetic technique. Environmental Earth Sciences, 2016, 75, 1.	2.7	64
23	Rock strength assessment based on regression tree technique. Engineering With Computers, 2016, 32, 343-354.	6.1	62
24	Estimating and optimizing safety factors of retaining wall through neural network and bee colony techniques. Engineering With Computers, 2019, 35, 945-954.	6.1	62
25	Overbreak prediction and optimization in tunnel using neural network and bee colony techniques. Engineering With Computers, 2019, 35, 1191-1202.	6.1	61
26	The use of new intelligent techniques in designing retaining walls. Engineering With Computers, 2020, 36, 283-294.	6.1	61
27	A Novel Intelligent ELM-BBO Technique for Predicting Distance of Mine Blasting-Induced Flyrock. Natural Resources Research, 2020, 29, 4103-4120.	4.7	56
28	Prediction and minimization of blast-induced flyrock using gene expression programming and firefly algorithm. Neural Computing and Applications, 2018, 29, 269-281.	5.6	54
29	Prediction of blast-induced air overpressure: a hybrid Al-based predictive model. Environmental Monitoring and Assessment, 2015, 187, 666.	2.7	48
30	The effects of particle swarm optimisation and genetic algorithm on ANN results in predicting pile bearing capacity. International Journal of Hydromechatronics, 2020, 3, 69.	2.3	43
31	A new hybrid method for predicting ripping production in different weathering zones through in situ tests. Measurement: Journal of the International Measurement Confederation, 2019, 147, 106826.	5.0	42
32	Estimating the friction angle of black shale core specimens with hybrid-ANN approaches. Measurement: Journal of the International Measurement Confederation, 2019, 145, 744-755.	5.0	40
33	Prediction of TBM performance in fresh through weathered granite using empirical and statistical approaches. Tunnelling and Underground Space Technology, 2021, 118, 104183.	6.2	39
34	Prediction of flyrock distance induced by mine blasting using a novel Harris Hawks optimization-based multi-layer perceptron neural network. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13, 1413-1427.	8.1	39
35	Optimal ELM–Harris Hawks Optimization and ELM–Grasshopper Optimization Models to Forecast Peak Particle Velocity Resulting from Mine Blasting. Natural Resources Research, 2021, 30, 2647-2662.	4.7	38
36	Proposing several hybrid PSO-extreme learning machine techniques to predict TBM performance. Engineering With Computers, 2022, 38, 3811-3827.	6.1	34

#	Article	IF	CITATIONS
37	Application of Tree-Based Predictive Models to Forecast Air Overpressure Induced by Mine Blasting. Natural Resources Research, 2021, 30, 1865-1887.	4.7	32
38	Development of fuzzy-GMDH model optimized by GSA to predict rock tensile strength based on experimental datasets. Neural Computing and Applications, 2020, 32, 14047-14067.	5.6	31
39	Intelligence Prediction of Some Selected Environmental Issues of Blasting: A Review. Open Construction and Building Technology Journal, 2020, 14, 298-308.	0.7	27
40	The effects of ABC, ICA, and PSO optimization techniques on prediction of ripping production. Engineering With Computers, 2020, 36, 1355-1370.	6.1	24
41	Effect of Geological Structure on Flyrock Prediction in Construction Blasting. Geotechnical and Geological Engineering, 2018, 36, 2217-2235.	1.7	21
42	Strength evaluation of granite block samples with different predictive models. Engineering With Computers, 2021, 37, 891-908.	6.1	18
43	Effects of moisture content on the strength of tropically weathered granite from Malaysia. Bulletin of Engineering Geology and the Environment, 2016, 75, 369-390.	3.5	16
44	Ripping Production Prediction in Different Weathering Zones According to Field Data. Geotechnical and Geological Engineering, 2017, 35, 2381-2399.	1.7	16
45	A typical weathering profile of granitic rock in Johor, Malaysia based on joint characterization. Arabian Journal of Geosciences, 2015, 8, 2191-2201.	1.3	15
46	Utilizing regression models to find functions for determining ripping production based on laboratory tests. Measurement: Journal of the International Measurement Confederation, 2017, 111, 216-225.	5.0	12
47	Prediction of rock interlocking by developing two hybrid models based on GA and fuzzy system. Engineering With Computers, 2019, 35, 1419-1430.	6.1	9
48	Machine Learning Classifiers for Modeling Soil Characteristics by Geophysics Investigations: A Comparative Study. Applied Sciences (Switzerland), 2020, 10, 5734.	2.5	9
49	EFFECT OF GEOLOGICAL STRUCTURE AND BLASTING PRACTICE IN FLY ROCK ACCIDENT AT JOHOR, MALAYSIA. Jurnal Teknologi (Sciences and Engineering), 2016, 78, .	0.4	8
50	An excavatability classification system for surface excavation in sedimentary rocks. Bulletin of Engineering Geology and the Environment, 2017, 76, 241-251.	3.5	7
51	Performance evaluation of existing surface excavation assessment methods on weathered sedimentary rock. Bulletin of Engineering Geology and the Environment, 2017, 76, 205-218.	3.5	6
52	Recent Developments in Machine Learning and Flyrock Prediction. Lecture Notes in Civil Engineering, 2022, , 597-612.	0.4	1
53	Assessment of quarry volume using 2-D resistivity imaging method. , 2013, , .		0
54	Rock mass classification for the assessment of blastability in tropically weathered igneous rocks. ,		0

2022, , 255-283.

#	Article	IF	CITATIONS
55	GEOSPATIAL APPROACH FOR GEOLOGICAL INVESTIGATION AT DISTRICT OF MERSING. Journal of Information System and Technology Management, 2021, 6, 174-185.	0.1	Ο