Quentin Ramasse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1180653/publications.pdf

Version: 2024-02-01

245 papers 10,334 citations

51 h-index 92 g-index

262 all docs 262 docs citations

times ranked

262

15754 citing authors

#	Article	IF	CITATIONS
1	Automated Image Analysis for Single-Atom Detection in Catalytic Materials by Transmission Electron Microscopy. Journal of the American Chemical Society, 2022, 144, 8018-8029.	13.7	33
2	Imaging the Spatial Distribution of Electronic States in Graphene Using Electron Energy-Loss Spectroscopy: Prospect of Orbital Mapping. Physical Review Letters, 2022, 128, 116401.	7.8	12
3	Low-energy Se ion implantation in MoS2 monolayers. Npj 2D Materials and Applications, 2022, 6, .	7.9	11
4	Elucidation of Metal Local Environments in Singleâ€Atom Catalysts Based on Carbon Nitrides. Small, 2022, 18, .	10.0	15
5	Sub-nanometer mapping of strain-induced band structure variations in planar nanowire core-shell heterostructures. Nature Communications, 2022, 13, .	12.8	10
6	Spatial distribution of metallic heteroatoms in soot nanostructure mapped by aberration-corrected STEM-EELS. Carbon, 2021, 173, 953-967.	10.3	7
7	Enhanced Spin–Orbit Coupling in Heavy Metals via Molecular Coupling. ACS Applied Materials & Samp; Interfaces, 2021, 13, 5228-5234.	8.0	10
8	Modification of the van der Waals interaction at the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Bi</mml:mi><mml:mand .<="" 2021,="" 5,="" ge(111)="" interface.="" materials,="" physical="" review="" td=""><td>ın>24/mm</td><td>l:man > </td></mml:mand></mml:msub></mml:mrow></mml:math>	ın> 24 /mm	l:man >
9	Exfoliation of Alphaâ€Germanium: A Covalent Diamondâ€Like Structure. Advanced Materials, 2021, 33, e2006826.	21.0	27
10	Removal of core hole distortion from ionization edges in electron energy loss spectroscopy. Physical Review B, 2021, 103, .	3.2	4
11	Role of SnO 2 in the Bifunctional Mechanism of CO Oxidation at Ptâ€SnO 2 Electrocatalysts. ChemElectroChem, 2021, 8, 2572-2582.	3.4	5
12	Atomic-Scale Vibrational and Electronic Response of Interfaces in Heterostructures for Spintronics Applications. Microscopy and Microanalysis, 2021, 27, 104-105.	0.4	0
13	Nanoscale functional chemistry and opto-electronic response of organic materials. Microscopy and Microanalysis, 2021, 27, 3062-3064.	0.4	O
14	The Advantage of Nanowire Configuration in Band Structure Determination. Advanced Functional Materials, 2021, 31, 2105426.	14.9	4
15	Linear and Helical Cesium Iodide Atomic Chains in Ultranarrow Single-Walled Carbon Nanotubes: Impact on Optical Properties. ACS Nano, 2021, 15, 13389-13398.	14.6	20
16	Unraveling electronic band structure of narrow-bandgap p–n nanojunctions in heterostructured nanowires. Physical Chemistry Chemical Physics, 2021, 23, 25019-25023.	2.8	6
17	The Advantage of Nanowire Configuration in Band Structure Determination (Adv. Funct. Mater.) Tj ETQq1 1 0.78	34314 rgB ⁻ 14.9	T / Overlock 10
18	Tuning band alignment at a semiconductor-crystalline oxide heterojunction via electrostatic modulation of the interfacial dipole. Physical Review Materials, 2021, 5, .	2.4	12

#	Article	IF	Citations
19	Controlling the Thermoelectric Properties of Nb-Doped TiO ₂ Ceramics through Engineering Defect Structures. ACS Applied Materials & Samp; Interfaces, 2021, 13, 57326-57340.	8.0	21
20	Theory of magnon diffuse scattering in scanning transmission electron microscopy. Physical Review B, 2021, 104, .	3.2	8
21	Isotopic compositions, nitrogen functional chemistry, and lowâ€loss electron spectroscopy of complex organic aggregates at the nanometer scale in the carbonaceous chondrite Renazzo. Meteoritics and Planetary Science, 2020, 55, 1293-1319.	1.6	16
22	Engineering grain boundaries at theÂ2D limit for theÂhydrogen evolution reaction. Nature Communications, 2020, 11, 57.	12.8	153
23	Heterotwin Zn ₃ P ₂ superlattice nanowires: the role of indium insertion in the superlattice formation mechanism and their optical properties. Nanoscale, 2020, 12, 22534-22540.	5.6	7
24	Bandgap determination from individual orthorhombic thin cesium lead bromide nanosheets by electron energy-loss spectroscopy. Nanoscale Horizons, 2020, 5, 1610-1617.	8.0	8
25	Vibrational STEM-EELS of Single Si Atom Point Defects in Graphene. Microscopy and Microanalysis, 2020, 26, 954-955.	0.4	0
26	Bond Dissociation and Reactivity of HF and H ₂ O in a Nano Test Tube. ACS Nano, 2020, 14, 11178-11189.	14.6	17
27	Activation of Copper Species on Carbon Nitride for Enhanced Activity in the Arylation of Amines. ACS Catalysis, 2020, 10, 11069-11080.	11.2	29
28	Long Cycle Life, Highly Ordered SnO ₂ /GeO ₂ Nanocomposite Inverse Opal Anode Materials for Liâ€ion Batteries. Advanced Functional Materials, 2020, 30, 2005073.	14.9	39
29	A primordial 15N-depleted organic component detected within the carbonaceous chondrite Maribo. Scientific Reports, 2020, 10, 20251.	3.3	6
30	Contrast reversal in atomic-scale phonon spectroscopic imaging. Physical Review B, 2020, 102, .	3.2	10
31	Electron Energy Loss Spectroscopy of Bright and Dark Modes in Hyperbolic Metamaterial Nanostructures. Advanced Optical Materials, 2020, 8, 2000277.	7.3	23
32	Plasmons in MoS ₂ studied via experimental and theoretical correlation of energy loss spectra. Journal of Microscopy, 2020, 279, 256-264.	1.8	22
33	Single-atom vibrational spectroscopy in the scanning transmission electron microscope. Science, 2020, 367, 1124-1127.	12.6	143
34	Accurate EELS background subtraction – an adaptable method in MATLAB. Ultramicroscopy, 2020, 217, 113052.	1.9	9
35	Functional Group Mapping by Electron Beam Vibrational Spectroscopy from Nanoscale Volumes. Nano Letters, 2020, 20, 1272-1279.	9.1	28
36	Evidence for Self-healing Benign Grain Boundaries and a Highly Defective Sb ₂ Se ₃ Thin-Film Photovoltaics. ACS Applied Materials & Interfaces, 2020, 12, 21730-21738.	8.0	57

#	Article	IF	Citations
37	Tents, Chairs, Tacos, Kites, and Rods: Shapes and Plasmonic Properties of Singly Twinned Magnesium Nanoparticles. ACS Nano, 2020, 14, 5968-5980.	14.6	32
38	Nanoscale Chemical Heterogeneity in Aromatic Polyamide Membranes for Reverse Osmosis Applications. ACS Applied Materials & Samp; Interfaces, 2020, 12, 19890-19902.	8.0	12
39	Shape Determination in Lithium-Ion Battery Cathode Materials Using Electron Diffraction-Assisted Electron Tomography. Microscopy and Microanalysis, 2019, 25, 1824-1825.	0.4	0
40	Self-Nanostructuring in SrTiO ₃ : A Novel Strategy for Enhancement of Thermoelectric Response in Oxides. ACS Applied Materials & Samp; Interfaces, 2019, 11, 32833-32843.	8.0	56
41	Selfâ€Assembly of Atomically Thin Chiral Copper Heterostructures Templated by Black Phosphorus. Advanced Functional Materials, 2019, 29, 1903120.	14.9	9
42	Atomicâ€Scale Study of Metal–Oxide Interfaces and Magnetoelastic Coupling in Selfâ€Assembled Epitaxial Vertically Aligned Magnetic Nanocomposites. Advanced Materials Interfaces, 2019, 6, 1900549.	3.7	7
43	High Spatial and Energy Resolution Analytical Scanning Transmission Electron Microscopy for Quantum Materials. Microscopy and Microanalysis, 2019, 25, 946-947.	0.4	0
44	Scan Strategies for Electron Energy Loss Spectroscopy at Optical and Vibrational Energies in Perylene Diimide Nanobelts. Microscopy and Microanalysis, 2019, 25, 1738-1739.	0.4	1
45	Atomically Resolved Vibrational Spectroscopy in the Electron Microscope. Microscopy and Microanalysis, 2019, 25, 592-593.	0.4	0
46	Local Coordination in Metal-Organic Frameworks Probed in the Vibrational and Optical Regime by EELS. Microscopy and Microanalysis, 2019, 25, 606-607.	0.4	0
47	Direct Quantification of Cu Vacancies and Spatial Localization of Surface Plasmon Resonances in Copper Phosphide Nanocrystals., 2019, 1, 665-670.		13
48	Challenges and Applications of High Spatial and Energy Resolution EELS for Mapping Functional Chemistry in Beam-Sensitive Materials at Low Acceleration Voltages. Microscopy and Microanalysis, 2019, 25, 480-481.	0.4	0
49	Atomic Scale Near-Edge Structures of a Structurally Abrupt Ni-SrTiO3 Interface. Microscopy and Microanalysis, 2019, 25, 664-665.	0.4	0
50	The structure and thermoelectric properties of tungsten bronze Ba6Ti2Nb8O30. Journal of Applied Physics, 2019, 126, 125115.	2.5	12
51	TEM Specimen Preparation Using a Low Energy Ion Beam for Nuclear Metallic Materials. Microscopy and Microanalysis, 2019, 25, 1608-1609.	0.4	1
52	Optical Properties and Dielectric Functions of Grain Boundaries and Interfaces in CdTe Thin-Film Solar Cells. ACS Applied Energy Materials, 2019, 2, 1419-1427.	5.1	15
53	Atomicâ€Scale Spectroscopic Imaging of the Extremeâ€UV Optical Response of B―and Nâ€Doped Graphene. Advanced Functional Materials, 2019, 29, 1901819.	14.9	7
54	Theory of momentum-resolved phonon spectroscopy in the electron microscope. Physical Review B, 2019, 99, .	3.2	20

#	Article	IF	Citations
55	Graphene Optoelectronics: Atomicâ€Scale Spectroscopic Imaging of the Extremeâ€UV Optical Response of B―and Nâ€Doped Graphene (Adv. Funct. Mater. 52/2019). Advanced Functional Materials, 2019, 29, 1970356.	14.9	0
56	Phonon Spectroscopy at Atomic Resolution. Physical Review Letters, 2019, 122, 016103.	7.8	105
57	Local Plasmon Engineering in Doped Graphene. ACS Nano, 2018, 12, 1837-1848.	14.6	25
58	Prospects for Engineering Thermoelectric Properties in La _{1/3} NbO ₃ Ceramics Revealed via Atomic-Level Characterization and Modeling. Inorganic Chemistry, 2018, 57, 45-55.	4.0	9
59	Transmission Electron Microscopy Reveals Deposition of Metal Oxide Coatings onto Metal–Organic Frameworks. Journal of the American Chemical Society, 2018, 140, 1348-1357.	13.7	51
60	Magnetic and structural depth profiles of Heusler alloy Co ₂ FeAl _{0.5} Si _{0.5} epitaxial films on Si(1 1 1). Journal of Physics Condensed Matter, 2018, 30, 065801.	1.8	3
61	Effect of composition on the structure of lithium- and manganese-rich transition metal oxides. Energy and Environmental Science, 2018, 11, 830-840.	30.8	41
62	Effect of annealing on the structure and magnetic properties of Co2FeAl0.5Si0.5 thin films on Ge(111). Journal of Alloys and Compounds, 2018, 748, 323-327.	5 . 5	10
63	Atomic-Resolution Spectrum Imaging of Semiconductor Nanowires. Nano Letters, 2018, 18, 1557-1563.	9.1	21
64	Localized Plasmon Response Engineering in B- and N-Doped Graphene. Microscopy and Microanalysis, 2018, 24, 1580-1581.	0.4	0
65	Linear heterostructured Ni ₂ Si/Si nanowires with abrupt interfaces synthesised in solution. Nanoscale, 2018, 10, 19182-19187.	5 . 6	4
66	Enhancing the thermoelectric power factor of Sr _{0.9} Nd _{0.1} TiO ₃ through control of the nanostructure and microstructure. Journal of Materials Chemistry A, 2018, 6, 24928-24939.	10.3	34
67	Subwavelength Spatially Resolved Coordination Chemistry of Metal–Organic Framework Glass Blends. Journal of the American Chemical Society, 2018, 140, 17862-17866.	13.7	23
68	Atomic-Level Characterization of Thermoelectric La1/3NbO3. Microscopy and Microanalysis, 2018, 24, 1534-1535.	0.4	0
69	Systematic Analysis of the Coupling Effects within Supported Plasmonic Nanorod Antenna Arrays. Journal of Physical Chemistry C, 2018, 122, 22041-22053.	3.1	3
70	Electronic Structure Control of Sub-nanometer 1D SnTe <i>via</i> Nanostructuring within Single-Walled Carbon Nanotubes. ACS Nano, 2018, 12, 6023-6031.	14.6	42
71	Utilising unit-cell twinning operators to reduce lattice thermal conductivity in modular structures: Structure and thermoelectric properties of Ga2O3(ZnO)9. Journal of Alloys and Compounds, 2018, 762, 892-900.	5.5	13
72	Universal geometric frustration in pyrochlores. Nature Communications, 2018, 9, 2619.	12.8	64

#	Article	IF	CITATIONS
73	Managing dose-, damage- and data-rates in multi-frame spectrum-imaging. Microscopy (Oxford,) Tj ETQq1 1 0.784	1.5 rgBT	/Qyerlock I
74	Influence of growth kinetics on Sn incorporation in direct band gap Ge _{1â^x} Sn _x nanowires. Journal of Materials Chemistry C, 2018, 6, 8738-8750.	5.5	18
75	Analytical STEM Investigation of the Post-Synthetic Modification (PMS) of Metal-Organic Frameworks (MOFs): Metal- and Ligand-Exchange in UiO-66. Microscopy and Microanalysis, 2018, 24, 1970-1971.	0.4	3
76	Molecular Excitation Spectroscopy near Metallic Surfaces using Electron Energy Loss Spectroscopy. Microscopy and Microanalysis, 2018, 24, 476-477.	0.4	1
77	Nanoscale momentum-resolved vibrational spectroscopy. Science Advances, 2018, 4, eaar7495.	10.3	111
78	Mapping VIS-terahertz (â‰17 THz) surface plasmons sustained on native and chemically functionalized percolated gold thin films using EELS. Microscopy (Oxford, England), 2018, 67, i30-i39.	1.5	3
79	Co-precipitation on the Basal and Prismatic Planes in Mg–Gd–Ag–Zr Alloy Subjected to Over-Ageing. Minerals, Metals and Materials Series, 2018, , 379-383.	0.4	O
80	Modifying the Interface Edge to Control the Electrical Transport Properties of Nanocontacts to Nanowires. Nano Letters, 2017, 17, 687-694.	9.1	10
81	Stabilization of Single Metal Atoms on Graphitic Carbon Nitride. Advanced Functional Materials, 2017, 27, 1605785.	14.9	249
82	Probing the Origin of Interfacial Carriers in SrTiO ₃ â€"LaCrO ₃ Superlattices. Chemistry of Materials, 2017, 29, 1147-1155.	6.7	19
83	Observation of complete inversion of the hysteresis loop in a bimodal magnetic thin film. Physical Review B, 2017, 95, .	3.2	13
84	Correlative characterization on microstructure evolution of Ni-based K403 alloy during thermal exposure. Acta Materialia, 2017, 131, 169-186.	7.9	29
85	Origin of reduced magnetization and domain formation in small magnetite nanoparticles. Scientific Reports, 2017, 7, 45997.	3.3	113
86	Probing the local nature of excitons and plasmons in few-layer MoS2. Npj 2D Materials and Applications, 2017, 1 , .	7.9	58
87	Elemental distribution within the long-period stacking ordered structure in a Mg-Gd-Zn-Mn alloy. Materials Characterization, 2017, 129, 247-251.	4.4	4
88	Single-Atom Scale Structural Selectivity in Te Nanowires Encapsulated Inside Ultranarrow, Single-Walled Carbon Nanotubes. ACS Nano, 2017, 11, 6178-6185.	14.6	69
89	Anomalous diffusion of single metal atoms on a graphene oxide support. Chemical Physics Letters, 2017, 683, 370-374.	2.6	25
90	Twenty years after: How "Aberration correction in the STEM―truly placed a "A synchrotron in a Microscope― Ultramicroscopy, 2017, 180, 41-51.	1.9	19

#	Article	IF	Citations
91	Heterogeneous nucleation of Al on AlB 2 in Al-7Si alloy. Materials Characterization, 2017, 128, 7-13.	4.4	19
92	High-resolution monochromated electron energy-loss spectroscopy of organic photovoltaic materials. Ultramicroscopy, 2017, 180, 125-132.	1.9	8
93	Ion-beam modification of 2-D materials - single implant atom analysis via annular dark-field electron microscopy. Ultramicroscopy, 2017, 176, 31-36.	1.9	27
94	Atomic-scale characterization of thermoelectric oxides using high spatial and energy resolution STEM-EELS. Microscopy and Microanalysis, 2017, 23, 370-371.	0.4	0
95	Stability of Schottky and Ohmic Au Nanocatalysts to ZnO Nanowires. Nano Letters, 2017, 17, 6626-6636.	9.1	7
96	Robust theoretical modelling of core ionisation edges for quantitative electron energy loss spectroscopy of B- and N-doped graphene. Journal of Physics Condensed Matter, 2017, 29, 225303.	1.8	8
97	Visualizing atomic-scale redox dynamics in vanadium oxide-based catalysts. Nature Communications, 2017, 8, 305.	12.8	59
98	Towards atomically precise manipulation of 2D nanostructures in the electron microscope. 2D Materials, 2017, 4, 042004.	4.4	73
99	Evidence for Cu2– <i>x</i> Se platelets at grain boundaries and within grains in Cu(In,Ga)Se2 thin films. Applied Physics Letters, 2017, 111, .	3.3	12
100	Point defect segregation and its role in the detrimental nature of Frank partials in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mi>Cu<td>ml:3n2><m< td=""><td>ml:mo>(</td></m<></td></mml:mi></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	m l:3n2 > <m< td=""><td>ml:mo>(</td></m<>	ml :m o>(
101	Momentum- and space-resolved high-resolution electron energy loss spectroscopy of individual single-wall carbon nanotubes. Physical Review B, 2017, 95, .	3.2	17
102	Imaging Two Dimensional Materials and their Heterostructures. Journal of Physics: Conference Series, 2017, 902, 012028.	0.4	8
103	Concurrent La and A-Site Vacancy Doping Modulates the Thermoelectric Response of SrTiO ₃ : Experimental and Computational Evidence. ACS Applied Materials & Sump; Interfaces, 2017, 9, 41988-42000.	8.0	43
104	Mapping grain boundary heterogeneity at the nanoscale in a positive temperature coefficient of resistivity ceramic. APL Materials, 2017, 5, 066105.	5.1	11
105	Electron Microscopy Reveals Structural and Chemical Changes at the Nanometer Scale in the <i>Osteogenesis Imperfecta Murine</i> Pathology. ACS Biomaterials Science and Engineering, 2017, 3, 2788-2797.	5.2	9
106	Van der Waals epitaxy between the highly lattice mismatched Cu-doped FeSe and Bi2Te3. NPG Asia Materials, 2017, 9, e402-e402.	7.9	21
107	Detection of oxygen sub-lattice ordering in A-site deficient perovskites through monochromated core-loss EELS mapping. Microscopy and Microanalysis, 2016, 22, 262-263.	0.4	1
108	Toward defectâ€free semiâ€polar GaN templates on preâ€structured sapphire. Physica Status Solidi (B): Basic Research, 2016, 253, 834-839.	1.5	5

#	Article	IF	CITATIONS
109	Compositional and electrical properties of line and planar defects in Cu(In,Ga)Se ₂ thin films for solar cells – a review. Physica Status Solidi - Rapid Research Letters, 2016, 10, 363-375.	2.4	47
110	Polar Spinel-Perovskite Interfaces: an atomistic study of Fe3O4(111)/SrTiO3(111) structure and functionality. Scientific Reports, 2016, 6, 29724.	3.3	10
111	Practical Implementation of Compressive Sensing for High Resolution STEM. Microscopy and Microanalysis, 2016, 22, 558-559.	0.4	9
112	Realisation of magnetically and atomically abrupt half-metal/semiconductor interface: Co2FeSi0.5Al0.5/Ge(111). Scientific Reports, 2016, 6, 37282.	3.3	18
113	Band gap widening at random CIGS grain boundary detected by valence electron energy loss spectroscopy. Applied Physics Letters, 2016, 109, .	3.3	19
114	The role of chemical structure on the magnetic and electronic properties of Co2FeAl0.5Si0.5/Si(111) interface. Applied Physics Letters, 2016, 108, .	3.3	15
115	Experimental and density functional study of Mn doped Bi2Te3 topological insulator. APL Materials, 2016, 4, .	5.1	14
116	Controlling the half-metallicity of Heusler/Si(1 1 1) interfaces by a monolayer of Si–Co–Si. Journal of Physics Condensed Matter, 2016, 28, 395003.	1.8	3
117	Study of Structure of Li- and Mn-rich Transition Metal Oxides Using 4D-STEM. Microscopy and Microanalysis, 2016, 22, 494-495.	0.4	10
118	Visualizing surface plasmons with photons, photoelectrons, and electrons. Analyst, The, 2016, 141, 3562-3572.	3.5	19
119	Local Variations of Cation Composition on a Nanometer-Sized Scale in a YBa2Cu3 O 6 . 9 2 Superconductor. Journal of Superconductivity and Novel Magnetism, 2016, 29, 1139-1143.	1.8	2
120	Single Atoms of Pt-Group Metals Stabilized by N-Doped Carbon Nanofibers for Efficient Hydrogen Production from Formic Acid. ACS Catalysis, 2016, 6, 3442-3451.	11.2	270
121	Annihilation of structural defects in chalcogenide absorber films for high-efficiency solar cells. Energy and Environmental Science, 2016, 9, 1818-1827.	30.8	42
122	Role of Structure and Defect Chemistry in High-Performance Thermoelectric Bismuth Strontium Cobalt Oxides. Chemistry of Materials, 2016, 28, 7470-7478.	6.7	22
123	Micro-to nano-scale characterisation of polyamide structures of the SW30HR RO membrane using advanced electron microscopy and stain tracers. Journal of Membrane Science, 2016, 520, 465-476.	8.2	107
124	Observation of compositional domains within individual copper indium sulfide quantum dots. Nanoscale, 2016, 8, 16157-16161.	5.6	10
125	The structural conversion from \hat{l} ±-AgVO \langle sub \rangle 3 \langle /sub \rangle to \hat{l} 2-AgVO \langle sub \rangle 3 \langle /sub \rangle : Ag nanoparticle decorated nanowires with application as cathode materials for Li-ion batteries. Nanoscale, 2016, 8, 16266-16275.	5.6	47
126	Characterization of Ordering in A-Site Deficient Perovskite Ca _{1â€"<i>>x</i>>} La _{2<i>>x</i>>/i>/3} TiO ₃ Using STEM/EELS. Inorganic Chemistry, 2016, 55, 9937-9948.	4.0	12

#	Article	IF	CITATIONS
127	Tuning the thermoelectric properties of A-site deficient SrTiO ₃ ceramics by vacancies and carrier concentration. Physical Chemistry Chemical Physics, 2016, 18, 26475-26486.	2.8	63
128	Nanoanalytical Electron Microscopy Reveals a Sequential Mineralization Process Involving Carbonate-Containing Amorphous Precursors. ACS Nano, 2016, 10, 6826-6835.	14.6	53
129	Local Aâ€Site Layering in Rareâ€Earth Orthochromite Perovskites by Solution Synthesis. Chemistry - A European Journal, 2016, 22, 18362-18367.	3.3	14
130	Atomic and electronic structure of twin growth defects in magnetite. Scientific Reports, 2016, 6, 20943.	3.3	15
131	Non-equilibrium induction of tin in germanium: towards direct bandgap $Gela^*xSnx$ nanowires. Nature Communications, 2016, 7, 11405.	12.8	100
132	Revealing heterogeneous nucleation of primary Si and eutectic Si by AlP in hypereutectic Al-Si alloys. Scientific Reports, 2016, 6, 25244.	3.3	28
133	Interfaceâ€Induced Polarization in SrTiO ₃ â€LaCrO ₃ Superlattices. Advanced Materials Interfaces, 2016, 3, 1500779.	3.7	28
134	Maghemite-like regions at the crossing of two antiphase boundaries in doped BiFeO ₃ . Materials Science and Technology, 2016, 32, 242-247.	1.6	5
135	Ba6â^'3x Nd8+2x Ti18O54 Tungsten Bronze: A New High-Temperature n-Type Oxide Thermoelectric. Journal of Electronic Materials, 2016, 45, 1894-1899.	2.2	17
136	The information content in single-molecule Raman nanoscopy. Advances in Physics: X, 2016, 1, 35-54.	4.1	8
137	Solvent Vapor Growth of Axial Heterostructure Nanowires with Multiple Alternating Segments of Silicon and Germanium. Nano Letters, 2016, 16, 374-380.	9.1	27
138	Tungsten Bronze Barium Neodymium Titanate (Ba _{66€"3<i>n</i>i>} 8+2 <i>n</i> i>Ti ₁₈ O ₅₄): An Intrinsic Nanostructured Material and Its Defect Distribution. Inorganic Chemistry, 2016, 55, 3338-3350.	4.0	17
139	Location of Co and Ni promoter atoms in multi-layer MoS2 nanocrystals for hydrotreating catalysis. Catalysis Today, 2016, 261, 75-81.	4.4	36
140	Elemental redistributions at structural defects in $Cu(In,Ga)Se2$ thin films for solar cells. Journal of Applied Physics, 2016, 120, .	2.5	15
141	Atomic study of Fe3O4/SrTiO3 Interface. Microscopy and Microanalysis, 2015, 21, 1299-1300.	0.4	2
142	Atomic-scale insights into 1D and 2D nano-materials. Journal of Physics: Conference Series, 2015, 644, 012021.	0.4	1
143	The roles of Eu during the growth of eutectic Si in Al-Si alloys. Scientific Reports, 2015, 5, 13802.	3.3	35
144	Stabilisation of Fe2O3-rich Perovskite Nanophase in Epitaxial Rare-earth Doped BiFeO3 Films. Scientific Reports, 2015, 5, 13066.	3.3	9

#	Article	IF	Citations
145	Absence of phase separation in nano-chessboard super-lattices in A-site deficient Ca-stabilized Nd2/3TiO3. Microscopy and Microanalysis, 2015, 21, 1353-1354.	0.4	0
146	Controlling the Electrical Transport Properties of Nanocontacts to Nanowires. Nano Letters, 2015, 15, 4248-4254.	9.1	34
147	Electronic Properties and Chemical Reactivity of TiS ₂ Nanoflakes. Journal of Physical Chemistry C, 2015, 119, 15707-15715.	3.1	47
148	On the Origin of Nanochessboard Superlattices in A-Site-Deficient Ca-Stabilized Nd _{2/3} TiO ₃ . Chemistry of Materials, 2015, 27, 497-507.	6.7	24
149	A facile electrochemical route to the preparation of uniform and monoatomic copper shells for gold nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 5565-5568.	2.8	13
150	Polarization screening-induced magnetic phase gradients at complex oxide interfaces. Nature Communications, 2015, 6, 6735.	12.8	71
151	Carbon–metal interfaces analyzed by aberration-corrected TEM: How copper and nickel nanoparticles interact with MWCNTs. Micron, 2015, 72, 52-58.	2.2	15
152	Symmetric and Asymmetric Decoration of Graphene: Bimetalâ€Graphene Sandwiches. Advanced Functional Materials, 2015, 25, 2899-2909.	14.9	31
153	Preparation of Gallium Sulfide Nanosheets by Liquid Exfoliation and Their Application As Hydrogen Evolution Catalysts. Chemistry of Materials, 2015, 27, 3483-3493.	6.7	195
154	Crystal structure and thermoelectric properties of Sr–Mo substituted CaMnO ₃ : a combined experimental and computational study. Journal of Materials Chemistry C, 2015, 3, 12245-12259.	5.5	37
155	Unravelling structural ambiguities in lithium- and manganese-rich transition metal oxides. Nature Communications, 2015, 6, 8711.	12.8	176
156	Liquid exfoliation of solvent-stabilized few-layer black phosphorus for applications beyond electronics. Nature Communications, 2015, 6, 8563.	12.8	921
157	Electronic Structure Modification of Ion Implanted Graphene: The Spectroscopic Signatures of p- and n-Type Doping. ACS Nano, 2015, 9, 11398-11407.	14.6	75
158	Tuning Thermoelectric Properties of Misfit Layered Cobaltites by Chemically Induced Strain. Journal of Physical Chemistry C, 2015, 119, 21818-21827.	3.1	33
159	Mapping strain modulated electronic structure perturbations in mixed phase bismuth ferrite thin films. Journal of Materials Chemistry C, 2015, 3, 1835-1845.	5.5	14
160	Functionalization of graphene at the organic/water interface. Chemical Science, 2015, 6, 1316-1323.	7.4	60
161	Aberration corrected STEM of iron rhodium nanoislands. Journal of Physics: Conference Series, 2014, 522, 012039.	0.4	1
162	Room Temperature Ferrimagnetism and Ferroelectricity in Strained, Thin Films of BiFe _{0.5} Mn _{0.5} O ₃ . Advanced Functional Materials, 2014, 24, 7478-7487.	14.9	38

#	Article	lF	CITATIONS
163	High Angle Dark Field Imaging of Two-Dimensional Crystals. Journal of Physics: Conference Series, 2014, 522, 012077.	0.4	0
164	The atomic structure and chemistry of Fe-rich steps on antiphase boundaries in Ti-doped Bi0.9Nd0.15FeO3. APL Materials, 2014, 2, .	5.1	18
165	Atomic Scale Imaging and Energy Loss Spectroscopy of Epitaxial Graphene. Materials Research Society Symposia Proceedings, 2014, 1714, 1.	0.1	O
166	Atomic-resolution electron energy loss studies of precipitates in an Al–Mg–Si–Cu–Ag alloy. Scripta Materialia, 2014, 74, 92-95.	5.2	26
167	Dielectric response of pentagonal defects in multilayer graphene nano-cones. Nanoscale, 2014, 6, 1833-1839.	5. 6	6
168	Bilayer graphene formed by passage of current through graphite: evidence for a three-dimensional structure. Nanotechnology, 2014, 25, 465601.	2.6	11
169	Fluid-induced organic synthesis in the solar nebula recorded in extraterrestrial dust from meteorites. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15338-15343.	7.1	29
170	Misfit strain driven cation inter-diffusion across an epitaxial multiferroic thin film interface. Journal of Applied Physics, 2014, 115 , .	2.5	30
171	Visualizing the Stoichiometry of Industrialâ€Style Coâ€Moâ€S Catalysts with Singleâ€Atom Sensitivity. Angewandte Chemie - International Edition, 2014, 53, 10723-10727.	13.8	124
172	Aberration-corrected scanning transmission electron microscopy for atomic-resolution studies of functional oxides. International Materials Reviews, 2014, 59, 115-131.	19.3	65
173	Chemically ordered decahedral FePt nanocrystals observed by electron microscopy. Physical Review B, 2014, 89, . Element-specific depth profile of magnetism and stoichiometry at the <mml:math< td=""><td>3.2</td><td>20</td></mml:math<>	3.2	20
174	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub><mml:mi mathvariant="normal">La</mml:mi><mml:mrow><mml:mn>0.67</mml:mn></mml:mrow></mml:msub> <mml:m mathvariant="normal">Sr<mml:mrow><mml:mn>0.33</mml:mn></mml:mrow><mml:m mathvariant="normal">MnO<mml:mn>3</mml:mn><mml:mo>/</mml:mo></mml:m></mml:m>	sub5 <mm< td=""><td>l:mi l:mi</td></mm<>	l:mi l:mi
175	mathvariant="normal">BiFeO <mml:mn>3</mml:mn> <. Physical Review B, 2014, 90, Siliconâ€"Carbon Bond Inversions Driven by 60-keV Electrons in Graphene. Physical Review Letters, 2014, 113, 115501.	7.8	123
176	Atomically resolved imaging of highly ordered alternating fluorinated graphene. Nature Communications, 2014, 5, 4902.	12.8	42
177	Thickness-Dependent Crossover from Charge- to Strain-Mediated Magnetoelectric Coupling in Ferromagnetic/Piezoelectric Oxide Heterostructures. ACS Nano, 2014, 8, 894-903.	14.6	61
178	Plasmonic Enhancement at Metal Atoms on Graphene Edges revealed by EFTEM. Journal of Physics: Conference Series, 2014, 522, 012078.	0.4	1
179	Atomic-Scale STEM-EELS Characterization of the Chemistry of Structural Defects and Interfaces in Energy-Related Materials. Microscopy and Microanalysis, 2014, 20, 562-563.	0.4	0
180	Performance and Stability of Dedicated Aberration-Corrected STEMs: a User's Perspective. Microscopy and Microanalysis, 2014, 20, 924-925.	0.4	6

#	Article	IF	Citations
181	Electron Microscopy Studies of Structure and Dynamics in MoS ₂ -based Hydrodesulfurization Catalysts. Microscopy and Microanalysis, 2014, 20, 1566-1567.	0.4	1
182	Electronic Structure Modification of Boron and Nitrogen Ion-Implanted Graphene Fingerprinted by STEM-EELS. Microscopy and Microanalysis, 2014, 20, 1734-1735.	0.4	0
183	Crystal Structure, Cation Occupancy and Vacancy Ordering in Thermoelectric (1-x)SrTiO3-xLa1/3NbO3: A STEM-EELS Study. Microscopy and Microanalysis, 2014, 20, 1958-1959.	0.4	1
184	In-situ observation and atomic resolution imaging of the ion irradiation induced amorphisation of graphene. Scientific Reports, 2014, 4, 6334.	3.3	62
185	Ion Implantation of Grapheneâ€"Toward IC Compatible Technologies. Nano Letters, 2013, 13, 4902-4907.	9.1	180
186	Control of Radiation Damage in MoS ₂ by Graphene Encapsulation. ACS Nano, 2013, 7, 10167-10174.	14.6	237
187	Factors that determine and limit the resistivity of high-quality individual ZnO nanowires. Nanotechnology, 2013, 24, 435706.	2.6	39
188	Quantifying the low-energy limit and spectral resolution in valence electron energy loss spectroscopy. Ultramicroscopy, 2013, 124, 130-138.	1.9	13
189	Probing the Bonding and Electronic Structure of Single Atom Dopants in Graphene with Electron Energy Loss Spectroscopy. Nano Letters, 2013, 13, 4989-4995.	9.1	187
190	Direct Evidence of Stacking Disorder in the Mixed Ionic-Electronic Conductor Sr ₄ Fe ₆ O _{12+Î} . ACS Nano, 2013, 7, 3078-3085.	14.6	7
191	Epitaxial growth and enhanced conductivity of an IT-SOFC cathode based on a complex perovskite superstructure with six distinct cation sites. Chemical Science, 2013, 4, 2403.	7.4	12
192	Mobile metal adatoms on single layer, bilayer, and trilayer graphene: An <i>ab initio</i> DFT study with van der Waals corrections correlated with electron microscopy data. Physical Review B, 2013, 87, .	3.2	84
193	Atomically Abrupt Silicon–Germanium Axial Heterostructure Nanowires Synthesized in a Solvent Vapor Growth System. Nano Letters, 2013, 13, 1675-1680.	9.1	61
194	Delaminated Graphene at Silicon Carbide Facets: Atomic Scale Imaging and Spectroscopy. ACS Nano, 2013, 7, 3045-3052.	14.6	73
195	Novel Nanorod Precipitate Formation in Neodymium and Titanium Codoped Bismuth Ferrite. Advanced Functional Materials, 2013, 23, 683-689.	14.9	29
196	Topologically induced confinement of collective modes in multilayer graphene nanocones measured by momentum-resolved STEM-VEELS. Physical Review B, 2013, 88, .	3.2	12
197	Local stabilisation of polar order at charged antiphase boundaries in antiferroelectric (Bi0.85Nd0.15)(Ti0.1Fe0.9)O3. APL Materials, 2013, 1, .	5.1	44
198	Subangstrom Edge Relaxations Probed by Electron Microscopy in Hexagonal Boron Nitride. Physical Review Letters, 2012, 109, 205502.	7.8	52

#	Article	IF	Citations
199	Investigating the electronic structure of fluorite-structured oxide compounds: comparison of experimental EELS with first principles calculations. Journal of Physics Condensed Matter, 2012, 24, 295503.	1.8	2
200	Interface control of bulk ferroelectric polarization. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9710-9715.	7.1	212
201	Effect of processing kinetics on the structure of ferromagnetic-ferroelectric-ferromagnetic interfaces. Journal of Applied Physics, 2012, 112, 104102.	2.5	5
202	Interfacial Charge Transfer and Chemical Bonding in a Ni–LaNbO ₄ Cermet for Proton-Conducting Solid-Oxide Fuel Cell Anodes. Chemistry of Materials, 2012, 24, 4152-4159.	6.7	16
203	Direct Experimental Evidence of Metal-Mediated Etching of Suspended Graphene. ACS Nano, 2012, 6, 4063-4071.	14.6	141
204	Direct Imaging of Dopant Clustering in Metal–Oxide Nanoparticles. ACS Nano, 2012, 6, 7077-7083.	14.6	32
205	Impact of oxygen bonding on the atomic structure and photoluminescence properties of Si-rich silicon nitride thin films. Journal of Applied Physics, 2012, 112, 073514.	2.5	27
206	Investigating the spatial distribution of plasmon modes in carbon cones. Microscopy and Microanalysis, 2012, 18, 1540-1541.	0.4	1
207	Ruddlesden-Popper faults in LaNiO3/LaAlO3 superlattices. Journal of Applied Physics, 2012, 112, .	2.5	32
208	Single atom identification by energy dispersive x-ray spectroscopy. Applied Physics Letters, 2012, 100, .	3.3	86
209	Quantum confinement of volume plasmons and interband transitions in germanium nanocrystals. Physical Review B, 2012, 86, .	3.2	12
210	Direct observation of quantum confinement of Si nanocrystals in Si-rich nitrides. Physical Review B, 2012, 85, .	3.2	45
211	Interaction of Metals with Suspended Graphene Observed by Transmission Electron Microscopy. Journal of Physical Chemistry Letters, 2012, 3, 953-958.	4.6	85
212	Graphene Reknits Its Holes. Nano Letters, 2012, 12, 3936-3940.	9.1	227
213	The Application of Scanning Transmission Electron Microscopy (STEM) to the Study of Nanoscale Systems. Nanostructure Science and Technology, 2012, , 11-40.	0.1	6
214	The legacy of crystal-plastic deformation in olivine: high-diffusivity pathways during serpentinization. Contributions To Mineralogy and Petrology, 2012, 163, 701-724.	3.1	43
215	Sample preparation for atomic-resolution STEM at low voltages by FIB. Ultramicroscopy, 2012, 114, 62-71.	1.9	321
216	Lens Aberrations: Diagnosis and Correction. , 2011, , 55-87.		2

#	Article	IF	CITATIONS
217	Direct imaging and chemical analysis of unstained DNA origami performed with a transmission electron microscope. Chemical Communications, 2011, 47, 9375.	4.1	14
218	Metalâ^'Graphene Interaction Studied via Atomic Resolution Scanning Transmission Electron Microscopy. Nano Letters, 2011, 11, 1087-1092.	9.1	172
219	Chemistry of Ruddlesden–Popper planar faults at a ferroelectric–ferromagnet perovskite interface. Journal of Applied Physics, 2011, 109, 084101.	2.5	15
220	Evolution of Gold Nanostructures on Graphene. Small, 2011, 7, 2868-2872.	10.0	56
221	Atomicâ€6cale Edge Structures on Industrialâ€6tyle MoS ₂ Nanocatalysts. Angewandte Chemie - International Edition, 2011, 50, 10153-10156.	13.8	223
222	Inside Cover: Atomicâ€Scale Edge Structures on Industrialâ€Style MoS ₂ Nanocatalysts (Angew. Chem. Int. Ed. 43/2011). Angewandte Chemie - International Edition, 2011, 50, 9994-9994.	13.8	4
223	Practical spatial resolution of electron energy loss spectroscopy in aberration corrected scanning transmission electron microscopy. Micron, 2011, 42, 539-546.	2.2	16
224	Polarity-driven nickel oxide precipitation in LaNiO3-LaAlO3 superlattices. Applied Physics Letters, 2011, 99, 211903.	3.3	32
225	Microstructural analysis of interfaces in a ferromagnetic-multiferroic epitaxial heterostructure. Journal of Applied Physics, 2011, 109, .	2.5	13
226	Diffusion in yttrium aluminium garnet at the nanometer-scale: Insight into the effective grain boundary width. American Mineralogist, 2011, 96, 1521-1529.	1.9	13
227	Chemistry of the Fe2O3/BiFeO3 Interface in BiFeO3 Thin Film Heterostructures. Materials, 2010, 3, 5274-5282.	2.9	8
228	Direct Evidence for Cation Nonâ€Stoichiometry and Cottrell Atmospheres Around Dislocation Cores in Functional Oxide Interfaces. Advanced Materials, 2010, 22, 2430-2434.	21.0	58
229	Probing Interfacial Electronic Structures in Atomic Layer LaMnO ₃ and SrTiO ₃ Superlattices. Advanced Materials, 2010, 22, 1156-1160.	21.0	69
230	Imaging MoS ₂ Nanocatalysts with Singleâ€Atom Sensitivity. Angewandte Chemie - International Edition, 2010, 49, 2708-2710.	13.8	96
231	Presence and spatial distribution of interfacial electronic states in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mm< td=""><td>าก3.2 าก>3<td>nl:<mark>26</mark> nl:mn></td></td></mm<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	าก 3.2 าก >3 <td>nl:<mark>26</mark> nl:mn></td>	nl: <mark>26</mark> nl:mn>
232	Structure of the (0001) basal twin boundary in Bi2Te3. Journal of Applied Physics, 2010, 108, .	2.5	68
233	Synthesis and Characterization of K _{8â^3<i>>x</i>64} 1. Inorganic Chemistry, 2010, 49, 815-822.	4.0	28
234	Interface Ferromagnetism and Orbital Reconstruction in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>BiFeO</mml:mi><mml:mn>3</mml:mn></mml:msub><mml:mtext mathvariant="normal">â^'</mml:mtext><mml:msub><mml:mi>La</mml:mi><mml:mn>0.7</mml:mn><td>7.8 b><mml:n< td=""><td>335 nsub><mml:r< td=""></mml:r<></td></mml:n<></td></mml:msub></mml:math>	7.8 b> <mml:n< td=""><td>335 nsub><mml:r< td=""></mml:r<></td></mml:n<>	335 nsub> <mml:r< td=""></mml:r<>

#	Article	IF	CITATION
235	High-resolution low-dose scanning transmission electron microscopy. Journal of Electron Microscopy, 2010, 59, 103-112.	0.9	113
236	Atomic scale observation and characterization of redox-induced interfacial layers in commercial Si thin film photovoltaics. Journal of Applied Physics, 2009, 105, 033716.	2.5	4
237	Atomic scale high-angle annular dark field STEM analysis of the N configuration in dilute nitrides of GaAs. Physical Review B, 2009, 80, .	3.2	22
238	Direct measurement of Co-ion spin state transitions in Ca3Co4O9 using variable-temperature electron energy-loss spectroscopy. Applied Physics Letters, 2009, 94, 093112.	3.3	17
239	Application of two-dimensional crystallography and image processing to atomic resolution Z-contrast images. Journal of Electron Microscopy, 2009, 58, 223-244.	0.9	17
240	Anomalous Electrical Conductivity of Nanosheaves of CeO ₂ . Chemistry of Materials, 2009, 21, 1182-1186.	6.7	39
241	Detection of Single Atoms and Buried Defects in Three Dimensions by Aberration-Corrected Electron Microscope with 0.5-A Information Limit. Microscopy and Microanalysis, 2008, 14, 469-477.	0.4	266
242	Atomic-Resolution Imaging of the Nanoscale Origin of Toughness in Rare-Earth Doped SiC. Nano Letters, 2008, 8, 2935-2939.	9.1	24
243	Hydrogen Encapsulation in a Silicon Clathrate Type I Structure: Na _{5.5} (H ₂) _{2.15} Si ₄₆ :  Synthesis and Characterization. Journal of the American Chemical Society, 2007, 129, 13857-13862.	13.7	66
244	Diagnosis of aberrations from crystalline samples in scanning transmission electron microscopy. Ultramicroscopy, 2005, 106, 37-56.	1.9	26
245	Atomic-Resolution Elemental Mapping of Precipitates in a 7449 Aluminium Alloy. Materials Science Forum, 0, 794-796, 63-67.	0.3	3