Stefan Costinean

List of Publications by Year

 in descending orderSource: https:|/exaly.com/author-pdf/11804947/publications.pdf
Version: 2024-02-01

Promoter Hypomethylation and Expression Is Conserved in Mouse Chronic Lymphocytic Leukemia
Induced by Decreased or Inactivated Dnmt3a．Cell Reports，2016，15，1190－1201．

MicroRNA－29b mediates altered innate immune development in acute leukemia．Journal of Clinical Investigation，2016，126，4404－4416．

Regulated Expression of miR－155 is Required for iNKT Cell Development．Frontiers in Immunology，2015， 6， 140.

Disruption of miR－29 Leads to Aberrant Differentiation of Smooth Muscle Cells Selectively Associated with Distal Lung Vasculature．PLoS Genetics，2015，11，e1005238．
miR－15b／16－2 deletion promotes B－cell malignancies．Proceedings of the National Academy of Sciences of the United States of America，2015，112，11636－11641．

MicroRNA 29 Targets Nuclear Factor－ÎOBâe＂Repressing Factor and Claudin 1 to Increase Intestinal
Permeability．Gastroenterology，2015，148，158－169．e8．

Gradual Rarefaction of Hematopoietic Precursors and Atrophy in a Depleted microRNA 29a，b and c
$7 \quad$ Environment．PLoS ONE，2015，10，e0131981．

Microrna 29b Mediates Immune Evasion of Natural Killer Cells in Acute Myeloid Leukemia．Blood，2015， 126，207－207．

Pluripotent Stem Cell miRNAs and Metastasis in Invasive Breast Cancer．Journal of the National Cancer
Institute，2014，106，
Protective role of miR－155 in breast cancer through 〈i〉RAD51＜／i〉 targeting impairs homologous 10 recombination after irradiation．Proceedings of the National Academy of Sciences of the United States of America，2014，111，4536－4541．

Hepatic Loss of miR－122 Predisposes Mice to Hepatobiliary Cyst and Hepatocellular Carcinoma upon
DiethyInitrosamine Exposure．American Journal of Pathology，2013，183，1719－1730．

Overexpression of miR－155 causes expansion，arrest in terminal differentiation and functional activation of mouse natural killer cells．Blood，2013，121，3126－3134．
miR－155 targets histone deacetylase 4 （HDAC4）and impairs transcriptional activity of B－cell lymphoma 6
13 （BCL6）in the EAA－miR－155 transgenic mouse model．Proceedings of the National Academy of Sciences of
$7.1 \quad 121$
the United States of America，2012，109，20047－20052．
miR－29abl Deficiency Identifies a Negative Feedback Loop Controlling Th1 Bias That Is Dysregulated in Multiple Sclerosis．Journal of Immunology，2012，189，1567－1576．
0.8

161

Stem cell-related markers in primary breast cancers and associated metastatic lesions. Modern
Pathology, 2012, 25, 949-955.

Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. Journal of Clinical Investigation, 2012, 122, 2871-2883.

Mutator activity induced by microRNA-155 (<i> miR-155 </i>) links inflammation and cancer. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4908-4913.

Aberrant expression of DNA damage response proteins is associated with breast cancer subtype and clinical features. Breast Cancer Research and Treatment, 2011, 129, 421-432.

Common Fragile Site Tumor Suppressor Genes and Corresponding Mouse Models of Cancer. Journal of
Biomedicine and Biotechnology, 2011, 2011, 1-10.

Reprogramming of miRNA networks in cancer and leukemia. Genome Research, 2010, 20, 589-599.
5.5

331

25 Modulation of mismatch repair and genomic stability by miR-155. Proceedings of the National Academy
of Sciences of the United States of America, 2010, 107, 6982-6987.

Fragile histidine triad protein, WW domainâ€containing oxidoreductase protein Wwox, and activator protein $2 \hat{1}^{3}$ expression levels correlate with basal phenotype in breast cancer. Cancer, 2009, 115, 899-908.

Src homology 2 domainâ€"containing inositol-5-phosphatase and CCAAT enhancer-binding protein $\hat{1}$ are targeted by miR-155 in B cells of E1⁄1/4-MiR-155 transgenic mice. Blood, 2009, 114, 1374-1382.

29 Karyotype-specific microRNA signature in chronic lymphocytic leukemia. Blood, 2009, 114, 3872-3879.
1.4

179

30 MicroRNAs, the immune system and rheumatic disease. Nature Clinical Practice Rheumatology, 2008, 4, 534-541.
3.2

117

34 Effect of Rapamycin on Mouse Chronic Lymphocytic Leukemia and the Development of Nonhematopoietic Malignancies in E1̂1/4-TCL1 Transgenic Mice. Cancer Research, 2006, 66, 915-920.

