List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1180257/publications.pdf Version: 2024-02-01

KEITH REVEN

#	Article	IF	CITATIONS
1	The future of distributed models: Model calibration and uncertainty prediction. Hydrological Processes, 1992, 6, 279-298.	2.6	3,485
2	Macropores and water flow in soils. Water Resources Research, 1982, 18, 1311-1325.	4.2	2,128
3	A manifesto for the equifinality thesis. Journal of Hydrology, 2006, 320, 18-36.	5.4	1,809
4	Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex environmental systems using the GLUE methodology. Journal of Hydrology, 2001, 249, 11-29.	5.4	1,716
5	Changing ideas in hydrology — The case of physically-based models. Journal of Hydrology, 1989, 105, 157-172.	5.4	1,286
6	The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 1991, 5, 59-79.	2.6	1,173
7	Prophecy, reality and uncertainty in distributed hydrological modelling. Advances in Water Resources, 1993, 16, 41-51.	3.8	977
8	Sensitivity analysis of environmental models: A systematic review with practical workflow. Environmental Modelling and Software, 2016, 79, 214-232.	4.5	926
9	Bayesian Estimation of Uncertainty in Runoff Prediction and the Value of Data: An Application of the GLUE Approach. Water Resources Research, 1996, 32, 2161-2173.	4.2	658
10	Macropores and water flow in soils revisited. Water Resources Research, 2013, 49, 3071-3092.	4.2	614
11	"Panta Rhei—Everything Flowsâ€: Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrological Sciences Journal, 2013, 58, 1256-1275.	2.6	569
12	Effects of spatial variability and scale with implications to hydrologic modeling. Journal of Hydrology, 1988, 102, 29-47.	5.4	558
13	How far can we go in distributed hydrological modelling?. Hydrology and Earth System Sciences, 2001, 5, 1-12.	4.9	528
14	Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 2019, 64, 1141-1158.	2.6	474
15	TOPMODEL: A critique. Hydrological Processes, 1997, 11, 1069-1085.	2.6	468
16	On hydrologic similarity: 2. A scaled model of storm runoff production. Water Resources Research, 1987, 23, 2266-2278.	4.2	378
17	Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and downstream level observations. Journal of Hydrology, 2005, 302, 46-69.	5.4	364
18	Towards a coherent philosophy for modelling the environment. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458, 2465-2484.	2.1	326

#	Article	IF	CITATIONS
19	Debates—The future of hydrological sciences: A (common) path forward? A call to action aimed at understanding velocities, celerities and residence time distributions of the headwater hydrograph. Water Resources Research, 2014, 50, 5342-5350.	4.2	325
20	Influence of uncertain boundary conditions and model structure on flood inundation predictions. Advances in Water Resources, 2006, 29, 1430-1449.	3.8	321
21	Quantifying contributions to storm runoff through end-member mixing analysis and hydrologic measurements at the Panola Mountain Research Watershed (Georgia, USA). Hydrological Processes, 2001, 15, 1903-1924.	2.6	299
22	Towards an alternative blueprint for a physically based digitally simulated hydrologic response modelling system. Hydrological Processes, 2002, 16, 189-206.	2.6	296
23	A dynamic TOPMODEL. Hydrological Processes, 2001, 15, 1993-2011.	2.6	289
24	A sensitivity analysis of the Penman-Monteith actual evapotranspiration estimates. Journal of Hydrology, 1979, 44, 169-190.	5.4	276
25	Toward a Generalization of the TOPMODEL Concepts: Topographic Indices of Hydrological Similarity. Water Resources Research, 1996, 32, 2135-2145.	4.2	261
26	Similarity and scale in catchment storm response. Reviews of Geophysics, 1990, 28, 1-18.	23.0	257
27	Catchment geomorphology and the dynamics of runoff contributing areas. Journal of Hydrology, 1983, 65, 139-158.	5.4	251
28	GLUE: 20 years on. Hydrological Processes, 2014, 28, 5897-5918.	2.6	239
29	Uncertainty and equifinality in calibrating distributed roughness coefficients in a flood propagation model with limited data. Advances in Water Resources, 1998, 22, 349-365.	3.8	236
30	The sensitivity of hydrological models to spatial rainfall patterns: an evaluation using observed data. Journal of Hydrology, 1994, 159, 305-333.	5.4	233
31	So just why would a modeller choose to be incoherent?. Journal of Hydrology, 2008, 354, 15-32.	5.4	221
32	Multi-method global sensitivity analysis of flood inundation models. Advances in Water Resources, 2008, 31, 1-14.	3.8	219
33	Data-based mechanistic modelling and the rainfall-flow non-linearity. Environmetrics, 1994, 5, 335-363.	1.4	216
34	Kinematic subsurface stormflow. Water Resources Research, 1981, 17, 1419-1424.	4.2	213
35	Flood-plain mapping: a critical discussion of deterministic and probabilistic approaches. Hydrological Sciences Journal, 2010, 55, 364-376.	2.6	213
36	Towards integrated environmental models of everywhere: uncertainty, data and modelling as a learning process. Hydrology and Earth System Sciences, 2007, 11, 460-467.	4.9	205

#	Article	IF	CITATIONS
37	WATER FLOW IN SOIL MACROPORES I. AN EXPERIMENTAL APPROACH. Journal of Soil Science, 1981, 32, 1-13.	1.2	203
38	Kinematic Wave Approximation to Infiltration Into Soils With Sorbing Macropores. Water Resources Research, 1985, 21, 990-996.	4.2	197
39	Searching for the Holy Grail of scientific hydrology: <i>Q_t</i> =(<i>S, R,) Tj Sciences 2006 10 609-618</i>	ETQg1	1 0.784314 rg 197
40	Facets of uncertainty: epistemic uncertainty, non-stationarity, likelihood, hypothesis testing, and communication. Hydrological Sciences Journal, 2016, 61, 1652-1665.	2.6	197
41	On constraining the predictions of a distributed model: The incorporation of fuzzy estimates of saturated areas into the calibration process. Water Resources Research, 1998, 34, 787-797.	4.2	196
42	Linking parameters across scales: Subgrid parameterizations and scale dependent hydrological models. Hydrological Processes, 1995, 9, 507-525.	2.6	193
43	An Agenda for Land Surface Hydrology Research and a Call for the Second International Hydrological Decade. Bulletin of the American Meteorological Society, 1999, 80, 2043-2058.	3.3	188
44	A restatement of the natural science evidence concerning catchment-based â€~natural' flood management in the UK. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20160706.	2.1	184
45	On red herrings and real herrings: disinformation and information in hydrological inference. Hydrological Processes, 2011, 25, 1676-1680.	2.6	176
46	Development of a European flood forecasting system. International Journal of River Basin Management, 2003, 1, 49-59.	2.7	172
47	Equifinality and uncertainty in physically based soil erosion models: application of the GLUE methodology to WEPP-the Water Erosion Prediction Project-for sites in the UK and USA. Earth Surface Processes and Landforms, 2000, 25, 825-845.	2.5	160
48	A limits of acceptability approach to model evaluation and uncertainty estimation in flood frequency estimation by continuous simulation: Skalka catchment, Czech Republic. Water Resources Research, 2009, 45, .	4.2	157
49	Use of spatially distributed water table observations to constrain uncertainty in a rainfall–runoff model. Advances in Water Resources, 1998, 22, 305-317.	3.8	156
50	On undermining the science?. Hydrological Processes, 2006, 20, 3141-3146.	2.6	156
51	Including spatially variable effective soil depths in TOPMODEL. Journal of Hydrology, 1997, 202, 158-172.	5.4	150
52	Multi-period and multi-criteria model conditioning to reduce prediction uncertainty in an application of TOPMODEL within the GLUE framework. Journal of Hydrology, 2007, 332, 316-336.	5.4	147
53	On hydrological heterogeneity — Catchment morphology and catchment response. Journal of Hydrology, 1988, 100, 353-375.	5.4	145
54	Bayesian updating of flood inundation likelihoods conditioned on flood extent data. Hydrological Processes, 2004, 18, 3347-3370.	2.6	144

#	Article	IF	CITATIONS
55	On subsurface stormflow: Predictions with simple kinematic theory for saturated and unsaturated flows. Water Resources Research, 1982, 18, 1627-1633.	4.2	140
56	Towards a limits of acceptability approach to the calibration of hydrological models: Extending observation error. Journal of Hydrology, 2009, 367, 93-103.	5.4	137
57	On subsurface stormflow: an analysis of response times. Hydrological Sciences Journal, 1982, 27, 505-521.	2.6	135
58	Estimation of flood inundation probabilities as conditioned on event inundation maps. Water Resources Research, 2003, 39, .	4.2	132
59	Comment on "Hyperresolution global land surface modeling: Meeting a grand challenge for monitoring Earth's terrestrial water―by Eric F. Wood et al Water Resources Research, 2012, 48, .	4.2	132
60	Infiltration into a class of vertically non-uniform soils. Hydrological Sciences Journal, 1984, 29, 425-434.	2.6	131
61	Dispersion parameters for undisturbed partially saturated soil. Journal of Hydrology, 1993, 143, 19-43.	5.4	125
62	Fuzzy set approach to calibrating distributed flood inundation models using remote sensing observations. Hydrology and Earth System Sciences, 2007, 11, 739-752.	4.9	125
63	A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean. Ecological Modelling, 2002, 155, 127-147.	2.5	124
64	On the colour and spin of epistemic error (and what we might do about it). Hydrology and Earth System Sciences, 2011, 15, 3123-3133.	4.9	122
65	Towards identifying sources of subsurface flow: A comparison of components identified by a physically based runoff model and those determined by chemical mixing techniques. Hydrological Processes, 1992, 6, 199-214.	2.6	121
66	A physically based model of heterogeneous hillslopes: 2. Effective hydraulic conductivities. Water Resources Research, 1989, 25, 1227-1233.	4.2	120
67	Sensitivity to space and time resolution of a hydrological model using digital elevation data. Hydrological Processes, 1995, 9, 69-81.	2.6	120
68	Flood frequency estimation by continuous simulation under climate change (with uncertainty). Hydrology and Earth System Sciences, 2000, 4, 393-405.	4.9	117
69	On the concept of model structural error. Water Science and Technology, 2005, 52, 167-175.	2.5	117
70	Runoff Production and Flood Frequency in Catchments of Order n: An Alternative Approach. Water Science and Technology Library, 1986, , 107-131.	0.3	115
71	Flood frequency estimation by continuous simulation of subcatchment rainfalls and discharges with the aim of improving dam safety assessment in a large basin in the Czech Republic. Journal of Hydrology, 2004, 292, 153-172.	5.4	115
72	Probabilistic flood risk mapping including spatial dependence. Hydrological Processes, 2013, 27, 1349-1363.	2.6	112

#	Article	IF	CITATIONS
73	Uncertainty in hydrograph separations based on geochemical mixing models. Journal of Hydrology, 2002, 255, 90-106.	5.4	108
74	Modelling everything everywhere: a new approach to decisionâ€making for water management under uncertainty. Freshwater Biology, 2012, 57, 124-132.	2.4	108
75	A physically based model of heterogeneous hillslopes: 1. Runoff production. Water Resources Research, 1989, 25, 1219-1226.	4.2	105
76	Bayesian estimation of uncertainty in land surface-atmosphere flux predictions. Journal of Geophysical Research, 1997, 102, 23991-23999.	3.3	105
77	Spatial Variability of Soil Phosphorus in Relation to the Topographic Index and Critical Source Areas. Journal of Environmental Quality, 2005, 34, 2263-2277.	2.0	104
78	Flood frequency prediction for data limited catchments in the Czech Republic using a stochastic rainfall model and TOPMODEL. Journal of Hydrology, 1997, 195, 256-278.	5.4	103
79	Developing a Translational Discourse to Communicate Uncertainty in Flood Risk between Science and the Practitioner. Ambio, 2007, 36, 692-704.	5.5	103
80	Robert E. Horton's perceptual model of infiltration processes. Hydrological Processes, 2004, 18, 3447-3460.	2.6	102
81	Base cation concentrations in subsurface flow from a forested hillslope: The role of flushing frequency. Water Resources Research, 1998, 34, 3535-3544.	4.2	100
82	Models as multiple working hypotheses: hydrological simulation of tropical alpine wetlands. Hydrological Processes, 2011, 25, 1784-1799.	2.6	99
83	ASSESSING THE EFFECT OF SPATIAL PATTERN OF PRECIPITATION IN MODELING STREAM FLOW HYDROGRAPHS. Journal of the American Water Resources Association, 1982, 18, 823-829.	2.4	98
84	Using interactive recession curve analysis to specify a general catchment storage model. Hydrology and Earth System Sciences, 1997, 1, 101-113.	4.9	98
85	Grasping the unavoidable subjectivity in calibration of flood inundation models: A vulnerability weighted approach. Journal of Hydrology, 2007, 333, 275-287.	5.4	96
86	A guide to good practice in modeling semantics for authors and referees. Water Resources Research, 2013, 49, 5092-5098.	4.2	94
87	On the generalized kinematic routing method. Water Resources Research, 1979, 15, 1238-1242.	4.2	93
88	Causal models as multiple working hypotheses about environmental processes. Comptes Rendus - Geoscience, 2012, 344, 77-88.	1.2	93
89	On doing better hydrological science. Hydrological Processes, 2008, 22, 3549-3553.	2.6	91
90	New method developed for studying flow on hillslopes. Eos, 1996, 77, 465-472.	0.1	90

#	Article	IF	CITATIONS
91	Modelling the effect of fire-exclusion and prescribed fire on wildfire size in Mediterranean ecosystems. Ecological Modelling, 2005, 183, 397-409.	2.5	90
92	Preferential flows and travel time distributions: defining adequate hypothesis tests for hydrological process models. Hydrological Processes, 2010, 24, 1537-1547.	2.6	90
93	The Geochemical Evolution of Riparian Ground Water in a Forested Piedmont Catchment. Ground Water, 2003, 41, 913-925.	1.3	88

94 Hold nequency estimation by continuous simulation for a catchinent treated as ungauged (with) ij Eroqu o o rep 170/eno(8	ock 10 Tf 50
---	--------------

95	Comment on "Hydrological forecasting uncertainty assessment: Incoherence of the GLUE methodology―by Pietro Mantovan and Ezio Todini. Journal of Hydrology, 2007, 338, 315-318.	5.4	86
96	Uncertainty assessment of a process-based integrated catchment model of phosphorus. Stochastic Environmental Research and Risk Assessment, 2009, 23, 991-1010.	4.0	86
97	Data assimilation and adaptive forecasting of water levels in the river Severn catchment, United Kingdom. Water Resources Research, 2006, 42, .	4.2	84
98	Dynamic real-time prediction of flood inundation probabilities. Hydrological Sciences Journal, 1998, 43, 181-196.	2.6	83
99	Throughflow and solute transport in an isolated sloping soil block in a forested catchment. Journal of Hydrology, 1991, 124, 81-99.	5.4	82
100	I believe in climate change but how precautionary do we need to be in planning for the future?. Hydrological Processes, 2011, 25, 1517-1520.	2.6	81
101	Towards the use of catchment geomorphology in flood frequency predictions. Earth Surface Processes and Landforms, 1987, 12, 69-82.	2.5	79
102	On the Variation of Infiltration Into a Homogeneous Soil Matrix Containing a Population of Macropores. Water Resources Research, 1986, 22, 383-388.	4.2	78
103	Application of a Generalized TOPMODEL to the Small Ringelbach Catchment, Vosges, France. Water Resources Research, 1996, 32, 2147-2159.	4.2	77
104	Modelling the hydrological response of mediterranean catchments, Prades, Catalonia. The use of distributed models as aids to hypothesis formulation. Hydrological Processes, 1997, 11, 1287-1306.	2.6	76
105	On the concept of delivery of sediment and nutrients to stream channels. Hydrological Processes, 2005, 19, 551-556.	2.6	75
106	Concepts of Information Content and Likelihood in Parameter Calibration for Hydrological Simulation Models. Journal of Hydrologic Engineering - ASCE, 2015, 20, .	1.9	75
107	Hyperresolution information and hyperresolution ignorance in modelling the hydrology of the land surface. Science China Earth Sciences, 2015, 58, 25-35.	5.2	74
108	Informal likelihood measures in model assessment: Theoretic development and investigation. Advances in Water Resources, 2008, 31, 1087-1100.	3.8	73

#	Article	IF	CITATIONS
109	The seventh facet of uncertainty: wrong assumptions, unknowns and surprises in the dynamics of human–water systems. Hydrological Sciences Journal, 2016, 61, 1748-1758.	2.6	73
110	Primary weathering rates, water transit times, and concentrationâ€discharge relations: A theoretical analysis for the critical zone. Water Resources Research, 2017, 53, 942-960.	4.2	73
111	The hydrological response of headwater and sideslope areas / La réponse hydrologique des zones de cours supérieurs et des zones de pente latérale. Hydrological Sciences Bulletin Des Sciences Hydrologiques, 1978, 23, 419-437.	0.2	72
112	Analytical compensation between DTM grid resolution and effective values of staurated hydraulic conductivity within the TOPMODEL framework. Hydrological Processes, 1997, 11, 1331-1346.	2.6	71
113	Vadose Zone Flow Model Uncertainty as Conditioned on Geophysical Data. Ground Water, 2003, 41, 119-127.	1.3	71
114	Temporal variability in phosphorus transfers: classifying concentration–discharge event dynamics. Hydrology and Earth System Sciences, 2004, 8, 88-97.	4.9	70
115	A modelling framework for evaluation of the hydrological impacts of nature-based approaches to flood risk management, with application to in-channel interventions across a 29-km ² scale catchment in the United Kingdom. Hydrological Processes, 2017, 31, 1734-1748.	2.6	69
116	An evaluation of three stochastic rainfall models. Journal of Hydrology, 2000, 228, 130-149.	5.4	67
117	Visualization approaches for communicating realâ€ŧime flood forecasting level and inundation information. Journal of Flood Risk Management, 2010, 3, 140-150.	3.3	67
118	A data based mechanistic approach to nonlinear flood routing and adaptive flood level forecasting. Advances in Water Resources, 2008, 31, 1048-1056.	3.8	66
119	Climate Change: The Need to Consider Human Forcings Besides Greenhouse Gases. Eos, 2009, 90, 413-413.	0.1	64
120	Integrated modeling of flow and residence times at the catchment scale with multiple interacting pathways. Water Resources Research, 2013, 49, 4738-4750.	4.2	63
121	Sensitivity analysis based on regional splits and regression trees (SARS-RT). Environmental Modelling and Software, 2006, 21, 976-990.	4.5	62
122	On hypothesis testing in hydrology: Why falsification of models is still a really good idea. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1278.	6.5	62
123	Rainfall-runoff modelling of a humid tropical catchment: the TOPMODEL approach. Hydrological Processes, 2002, 16, 231-253.	2.6	61
124	How to make advances in hydrological modelling. Hydrology Research, 2019, 50, 1481-1494.	2.7	61
125	Hillslope hydrographs by the finite element method. Earth Surfaces Processes, 1977, 2, 13-28.	0.7	58
126	Using internal catchment information to reduce the uncertainty of discharge and baseflow predictions. Advances in Water Resources, 2007, 30, 808-823.	3.8	58

#	Article	IF	CITATIONS
127	Conditioning uncertainty in ecological models: Assessing the impact of fire management strategies. Ecological Modelling, 2007, 207, 34-44.	2.5	58
128	Interflow. , 1989, , 191-219.		58
129	Discharge and water table predictions using a generalised TOPMODEL formulation. Hydrological Processes, 1997, 11, 1145-1167.	2.6	57
130	Equifinality, sensitivity and predictive uncertainty in the estimation of critical loads. Science of the Total Environment, 1999, 236, 191-214.	8.0	57
131	Do we need a Community Hydrological Model?. Water Resources Research, 2015, 51, 7777-7784.	4.2	57
132	Equifinality and the Problem of Robust Calibration in Nitrogen Budget Simulations. Soil Science Society of America Journal, 1999, 63, 1934-1941.	2.2	56
133	Flood frequency estimation by continuous simulation (with likelihood based uncertainty estimation). Hydrology and Earth System Sciences, 2000, 4, 23-34.	4.9	56
134	On hypothesis testing in hydrology. Hydrological Processes, 2001, 15, 1655-1657.	2.6	56
135	Multivariate seasonal period model rejection within the generalised likelihood uncertainty estimation procedure. Water Science and Application, 2003, , 69-87.	0.3	55
136	GLUE Based Assessment on the Overall Predictions of a MIKE SHE Application. Water Resources Management, 2009, 23, 1325-1349.	3.9	55
137	Regionalization as a learning process. Water Resources Research, 2009, 45, .	4.2	55
138	Uncertainty estimation of endâ€member mixing using generalized likelihood uncertainty estimation (GLUE), applied in a lowland catchment. Water Resources Research, 2013, 49, 4792-4806.	4.2	54
139	A history of TOPMODEL. Hydrology and Earth System Sciences, 2021, 25, 527-549.	4.9	54
140	Comment on "Pursuing the method of multiple working hypotheses for hydrological modeling―by P. Clark et al Water Resources Research, 2012, 48, .	4.2	53
141	Dynamic TOPMODEL: A new implementation in R and its sensitivity to time and space steps. Environmental Modelling and Software, 2015, 72, 155-172.	4.5	53
142	Estimation of evapotranspiration at the landscape scale: A fuzzy disaggregation approach. Water Resources Research, 1997, 33, 2929-2938.	4.2	52
143	Flow and flow routing in upland channel networks / L'écoulement et le calcul du cheminement de l'écoulement dans les réseaux des canaux montagneux. Hydrological Sciences Bulletin Des Sciences Hydrologiques, 1979, 24, 303-325.	0.2	51
144	Uncertainty in the estimation of critical loads: A practical methodology. Water, Air, and Soil Pollution, 1997, 98, 297-316.	2.4	51

#	Article	IF	CITATIONS
145	Modelling hydrologic responses in a small forested catchment (Panola Mountain, Georgia, USA): a comparison of the original and a new dynamic TOPMODEL. Hydrological Processes, 2003, 17, 345-362.	2.6	50
146	A Century of Denial: Preferential and Nonequilibrium Water Flow in Soils, 1864â€1984. Vadose Zone Journal, 2018, 17, 1-17.	2.2	50
147	Deep learning, hydrological processes and the uniqueness of place. Hydrological Processes, 2020, 34, 3608-3613.	2.6	50
148	On hydrologic similarity: 3. A dimensionless flood frequency model using a generalized geomorphologic unit hydrograph and partial area runoff generation. Water Resources Research, 1990, 26, 43-58.	4.2	49
149	Modelling extreme rainfalls using a modified random pulse Bartlett–Lewis stochastic rainfall model (with uncertainty). Advances in Water Resources, 2000, 24, 203-211.	3.8	49
150	Multi-objective parameter conditioning of a three-source wheat canopy model. Agricultural and Forest Meteorology, 2004, 122, 39-63.	4.8	49
151	Multiple sources of predictive uncertainty in modeled estimates of net ecosystem CO2 exchange. Ecological Modelling, 2009, 220, 3259-3270.	2.5	49
152	On model uncertainty, risk and decision making. Hydrological Processes, 2000, 14, 2605-2606.	2.6	48
153	Downstream changes in DOC: Inferring contributions in the face of model uncertainties. Water Resources Research, 2014, 50, 514-525.	4.2	48
154	The Predictive Uncertainty of Land Surface Fluxes in Response to Increasing Ambient Carbon Dioxide. Journal of Climate, 2001, 14, 2551-2562.	3.2	47
155	The limits of splitting: Hydrology. Science of the Total Environment, 1996, 183, 89-97.	8.0	46
156	Smiling in the rain: Seven reasons to be positive about uncertainty in hydrological modelling. Hydrological Processes, 2013, 27, 1117-1122.	2.6	46
157	Embracing equifinality with efficiency: Limits of Acceptability sampling using the DREAM(LOA) algorithm. Journal of Hydrology, 2018, 559, 954-971.	5.4	46
158	Surface water hydrology—runoff generation and basin structure. Reviews of Geophysics, 1983, 21, 721-730.	23.0	45
159	The introduction of macroscale hydrological complexity into land surface-atmosphere transfer models and the effect on planetary boundary layer development. Journal of Hydrology, 1995, 166, 421-444.	5.4	45
160	A discrete particle representation of hillslope hydrology: hypothesis testing in reproducing a tracer experiment at Gårdsjön, Sweden. Hydrological Processes, 2011, 25, 3602-3612.	2.6	45
161	Communicating uncertainty in flood inundation mapping: a case study. International Journal of River Basin Management, 2015, 13, 285-295.	2.7	45
162	Epistemic uncertainties and natural hazard risk assessment – Part 1: A review of different natural hazard areas. Natural Hazards and Earth System Sciences, 2018, 18, 2741-2768.	3.6	45

#	Article	IF	CITATIONS
163	Testing the distributed water table predictions of TOPMODEL (allowing for uncertainty in model) Tj ETQq1 1 0.78	4314 rgBT 4.2	⁻ /Qverlock
164	Towards a methodology for testing models as hypotheses in the inexact sciences. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019, 475, 20180862.	2.1	44
165	A history of the concept of time of concentration. Hydrology and Earth System Sciences, 2020, 24, 2655-2670.	4.9	44
166	WATER FLOW IN SOIL MACROPORES III. A STATISTICAL APPROACH. Journal of Soil Science, 1981, 32, 31-39.	1.2	43
167	Inferences about solute transport in macroporous forest soils from time series models. Geoderma, 1990, 46, 249-262.	5.1	43
168	Input of fecal coliform bacteria to an upland stream channel in the Yorkshire Dales. Water Resources Research, 1992, 28, 1869-1876.	4.2	42
169	Regional water balance modelling using flow-duration curves with observational uncertainties. Hydrology and Earth System Sciences, 2014, 18, 2993-3013.	4.9	42
170	Comments on generalised likelihood uncertainty estimation. Reliability Engineering and System Safety, 2006, 91, 1315-1321.	8.9	41
171	Adaptive forecasting of phytoplankton communities. Water Research, 2018, 134, 74-85.	11.3	41
172	Implications of model uncertainty for the mapping of hillslope-scale soil erosion predictions. Earth Surface Processes and Landforms, 2001, 26, 1333-1352.	2.5	40
173	Barriers to progress in distributed hydrological modelling. Hydrological Processes, 2015, 29, 2074-2078.	2.6	40
174	Perceptual models of uncertainty for socio-hydrological systems: a flood risk change example. Hydrological Sciences Journal, 2017, 62, 1705-1713.	2.6	40
175	Microâ€, Mesoâ€, Macroporosity and Channeling Flow Phenomena in Soils. Soil Science Society of America Journal, 1981, 45, 1245-1245.	2.2	39
176	Conditioning a multiple-patch SVAT Model using uncertain time-space estimates of latent heat fluxes as inferred from remotely sensed data. Water Resources Research, 1999, 35, 2751-2761.	4.2	38
177	The Future of Distributed Modelling. Hydrological Processes, 2002, 16, 169-172.	2.6	37
178	Observational data and scale-dependent parameterizations: explorations using a virtual hydrological reality. Hydrological Processes, 2002, 16, 293-312.	2.6	37
179	Controls on Catchment-Scale Patterns of Phosphorus in Soil, Streambed Sediment, and Stream Water. Journal of Environmental Quality, 2007, 36, 694-708.	2.0	37
180	Epistemic uncertainties and natural hazard risk assessment – PartÂ2: What should constitute good practice?. Natural Hazards and Earth System Sciences, 2018, 18, 2769-2783.	3.6	37

#	Article	IF	CITATIONS
181	Comment on "Bayesian recursive parameter estimation for hydrologic models―by M. Thiemann, M. Trosset, H. Gupta, and S. Sorooshian. Water Resources Research, 2003, 39, .	4.2	36
182	Functional classification and evaluation of hydrographs based on Multicomponent Mapping (Mx). International Journal of River Basin Management, 2004, 2, 89-100.	2.7	36
183	So how much of your error is epistemic? Lessons from Japan and Italy. Hydrological Processes, 2013, 27, 1677-1680.	2.6	36
184	Environmental Modelling. , 0, , .		36
185	Infiltration excess at the Horton Hydrology Laboratory (or not?). Journal of Hydrology, 2004, 293, 219-234.	5.4	35
186	Comment on "Equifinality of formal (DREAM) and informal (GLUE) Bayesian approaches in hydrologic modeling?―by Jasper A. Vrugt, Cajo J. F. ter Braak, Hoshin V. Gupta and Bruce A. Robinson. Stochastic Environmental Research and Risk Assessment, 2009, 23, 1059-1060.	4.0	35
187	A distribution function approach to water flow in soil macropores based on kinematic wave theory. Journal of Hydrology, 1986, 83, 173-183.	5.4	34
188	On explanatory depth and predictive power. Hydrological Processes, 2001, 15, 3069-3072.	2.6	34
189	On virtual observatories and modelled realities (or why discharge must be treated as a virtual) Tj ETQq1 1 0.7843	814 rgBT / 2.0	Ovgrlock 10
190	Developing observational methods to drive future hydrological science: Can we make a start as a community?. Hydrological Processes, 2020, 34, 868-873.	2.6	34
191	The effect of mole drainage on the hydrological response of a swelling clay soil. Journal of Hydrology, 1983, 64, 205-223.	5.4	33
192	On the future of distributed modelling in hydrology. Hydrological Processes, 2000, 14, 3183-3184.	2.6	33
193	Data-supported robust parameterisations in land surface-atmosphere flux predictions: towards a top-down approach. Hydrological Processes, 2003, 17, 2259-2277.	2.6	33
194	Hysteresis and scale in catchment storage, flow and transport. Hydrological Processes, 2015, 29, 3604-3615.	2.6	33
195	Digital elevation analysis for distributed hydrological modeling: Reducing scale dependence in effective hydraulic conductivity values. Water Resources Research, 1997, 33, 2097-2101.	4.2	32
196	Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments — Comment. Journal of Hydrology, 1991, 129, 389-396.	5.4	31
197	A semi-empirical model to assess uncertainty of spatial patterns of erosion. Catena, 2006, 66, 198-210.	5.0	31
198	Models of everywhere revisited: A technological perspective. Environmental Modelling and Software, 2019, 122, 104521.	4.5	31

#	Article	IF	CITATIONS
199	Three-dimensional modelling of hillslope hydrology. Hydrological Processes, 1992, 6, 347-359.	2.6	30
200	Testing a new model of aphid abundance with sedentary and non-sedentary predators. Ecological Modelling, 2009, 220, 2469-2480.	2.5	30
201	Integration of hillslope hydrology and 2D hydraulic modelling for natural flood management. Hydrology Research, 2019, 50, 1535-1548.	2.7	30
202	Parameter conditioning and prediction uncertainties of the LISFLOOD-WB distributed hydrological model. Hydrological Sciences Journal, 2006, 51, 45-65.	2.6	29
203	Decision tree for choosing an uncertainty analysis methodology: a wiki experiment. Hydrological Processes, 2006, 20, 3793-3798.	2.6	29
204	Estimating transport parameters at the grid scale: on the value of a single measurement. Journal of Hydrology, 1993, 143, 109-123.	5.4	28
205	Water Resources Assessment and Regional Virtual Water Potential in the Turpan Basin, China. Water Resources Management, 2010, 24, 3321-3332.	3.9	27
206	What we see now: Event-persistence and the predictability of hydro-eco-geomorphological systems. Ecological Modelling, 2015, 298, 4-15.	2.5	27
207	Kinematic wave approximation to the initiation of subsurface storm flow in a sloping forest soil. Advances in Water Resources, 1986, 9, 70-76.	3.8	25
208	Towards the provision of site specific flood warnings using wireless sensor networks. Meteorological Applications, 2009, 16, 57-64.	2.1	25
209	Application of a data-based mechanistic modelling (DBM) approach for predicting runoff generation in semi-arid regions. Hydrological Processes, 2001, 15, 2281-2295.	2.6	24
210	A comparison of non-linear least square and GLUE for model calibration and uncertainty estimation for pesticide transport in soils. Advances in Water Resources, 2006, 29, 1924-1933.	3.8	24
211	Digital catchment observatories: A platform for engagement and knowledge exchange between catchment scientists, policy makers, and local communities. Water Resources Research, 2015, 51, 4815-4822.	4.2	24
212	Hillslope response to sprinkling and natural rainfall using velocity and celerity estimates in a slate-bedrock catchment. Journal of Hydrology, 2018, 558, 366-379.	5.4	24
213	A new method, with application, for analysis of the impacts on flood risk of widely distributed enhanced hillslope storage. Hydrology and Earth System Sciences, 2018, 22, 2589-2605.	4.9	24
214	Nature as the "Natural―Goal for Water Management: A Conversation. Ambio, 2009, 38, 209-214.	5.5	23
215	Robert E. Horton and abrupt rises of ground water. Hydrological Processes, 2004, 18, 3687-3696.	2.6	22
216	Knowledge gaps in our perceptual model of Great Britain's hydrology. Hydrological Processes, 2021, 35, e14288.	2.6	22

#	Article	IF	CITATIONS
217	The uncertainty cascade in model fusion. Geological Society Special Publication, 2017, 408, 255-266.	1.3	21
218	Perceptual perplexity and parameter parsimony. Wiley Interdisciplinary Reviews: Water, 2021, 8, e1530.	6.5	21
219	Processes influencing model-data mismatch in drought-stressed, fire-disturbed eddy flux sites. Journal of Geophysical Research, 2011, 116, .	3.3	20
220	Movement of water and the herbicides atrazine and isoproturon through a large structured clay soil core. Journal of Contaminant Hydrology, 1995, 19, 237-260.	3.3	19
221	On modelling as collective intelligence. Hydrological Processes, 2001, 15, 2205-2207.	2.6	19
222	Spatial and temporal predictions of soil moisture patterns and evaporative losses using TOPMODEL and the GASFLUX model for an Alaskan catchment. Hydrology and Earth System Sciences, 1998, 2, 51-64.	4.9	18
223	Comparison of a Multiple Interacting Pathways model with a classical kinematic wave subsurface flow solution. Hydrological Sciences Journal, 2012, 57, 203-216.	2.6	18
224	Application of data-based mechanistic modelling for flood forecasting at multiple locations in the Eden catchment in the National Flood Forecasting System (England and Wales). Hydrology and Earth System Sciences, 2013, 17, 177-185.	4.9	18
225	Equipped to deal with uncertainty in climate and impacts predictions: lessons from internal peer review. Climatic Change, 2015, 132, 1-14.	3.6	18
226	Assessing the significance of wetâ€canopy evaporation from forests during extreme rainfall events for flood mitigation in mountainous regions of the <scp>United Kingdom</scp> . Hydrological Processes, 2020, 34, 4740-4754.	2.6	18
227	Editorial: Future of distributed modelling. Hydrological Processes, 1992, 6, 253-254.	2.6	17
228	Advice to a young hydrologist. Hydrological Processes, 2016, 30, 3578-3582.	2.6	17
229	Technical note: Hydrology modelling R packages – a unified analysis of models and practicalities from a user perspective. Hydrology and Earth System Sciences, 2021, 25, 3937-3973.	4.9	17
230	Invalidation of Models and Fitness-for-Purpose: A Rejectionist Approach. Simulation Foundations, Methods and Applications, 2019, , 145-171.	0.1	17
231	On environmental models of everywhere on the GRID. Hydrological Processes, 2003, 17, 171-174.	2.6	16
232	A fuzzy decision tree to predict phosphorus export at the catchment scale. Journal of Hydrology, 2006, 331, 484-494.	5.4	16
233	Communicating uncertainty in flood risk mapping. , 2012, , .		16
234	Preface to the special section on Scale Problems in Hydrology. Water Resources Research, 1997, 33, 2881-2881.	4.2	15

#	Article	IF	CITATIONS
235	Uncertainty assessment of a dominant-process catchment model of dissolved phosphorus transfer. Hydrology and Earth System Sciences, 2016, 20, 4819-4835.	4.9	15
236	A method for uncertainty constraint of catchment discharge and phosphorus load estimates. Hydrological Processes, 2018, 32, 2779-2787.	2.6	15
237	The era of infiltration. Hydrology and Earth System Sciences, 2021, 25, 851-866.	4.9	15
238	Determining E. coli burden on pasture in a headwater catchment: Combined field and modelling approach. Environment International, 2012, 43, 6-12.	10.0	14
239	Velocities, celerities and the basin of attraction in catchment response. Hydrological Processes, 2015, 29, 5214-5226.	2.6	14
240	Reproducing an extreme flood with uncertain post-event information. Hydrology and Earth System Sciences, 2017, 21, 3597-3618.	4.9	14
241	On fire and rain (or predicting the effects of change). Hydrological Processes, 2001, 15, 1397-1399.	2.6	13
242	Upscaling discrete internal observations for obtaining catchment-averaged TOPMODEL parameters in a small Mediterranean mountain basin. Physics and Chemistry of the Earth, 2008, 33, 1090-1094.	2.9	13
243	Uncertainty in flood estimation. Structure and Infrastructure Engineering, 2009, 5, 325-332.	3.7	13
244	A landslip/debris flow in bilsdale, North York Moors, September 1976. Earth Surfaces Processes, 1978, 3, 407-419.	0.7	12
245	Estimating phosphorus delivery with its mitigation measures from soil to stream using fuzzy rules. Soil Use and Management, 2013, 29, 187-198.	4.9	12
246	Exploratory studies into seasonal flow forecasting potential for large lakes. Hydrology and Earth System Sciences, 2018, 22, 127-141.	4.9	12
247	On landscape space to model space mapping. Hydrological Processes, 2001, 15, 323-324.	2.6	11
248	Uncertainty analysis of the rainfall runoff model LisFlood within the Generalized Likelihood Uncertainty Estimation (GLUE). International Journal of River Basin Management, 2004, 2, 123-133.	2.7	11
249	Does an interagency meeting in Washington imply uncertainty?. Hydrological Processes, 2004, 18, 1747-1750.	2.6	11
250	â€~Here we have a system in which liquid water is moving; let's just get at the physics of it' (Penman 1965). Hydrology Research, 2014, 45, 727-736.	2.7	11
251	Strategies for Testing the Impact of Natural Flood Risk Management Measures. , 0, , .		11
252	Issues in generating stochastic observables for hydrological models. Hydrological Processes, 2021, 35, e14203.	2.6	11

#	Article	IF	CITATIONS
253	Comments on â€~A stochasticâ€conceptual analysis of rainfallâ€runoff processes on a hillslope' by R. Allan Freeze. Water Resources Research, 1981, 17, 431-432.	4.2	10
254	Reduced Order Emulation of Distributed Hydraulic Simulation Models. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2009, 42, 1762-1767.	0.4	10
255	Comparison of saturated areas mapping methods in the Jizera Mountains, Czech Republic. Journal of Hydrology and Hydromechanics, 2014, 62, 160-168.	2.0	10
256	On the Value of Local Measurements for Prediction of Pesticide Transport at the Field Scale. Vadose Zone Journal, 2006, 5, 222-233.	2.2	9
257	A disaggregating approach to describe overland flow occurrence within a catchment. Journal of Hydrology, 2006, 323, 22-40.	5.4	9
258	Vegetation pattern as an indicator of saturated areas in a Czech headwater catchment. Hydrological Processes, 2014, 28, 5297-5308.	2.6	9
259	Constraining uncertainty and process-representation in an algal community lake model using high frequency in-lake observations. Ecological Modelling, 2017, 357, 1-13.	2.5	9
260	Prediction of storm transfers and annual loads with data-based mechanistic models using high-frequency data. Hydrology and Earth System Sciences, 2017, 21, 6425-6444.	4.9	9
261	Estimating phosphorus delivery from land to water in headwater catchments using a fuzzy decision tree approach. Soil Use and Management, 2013, 29, 175-186.	4.9	8
262	Event and model dependent rainfall adjustments to improve discharge predictions. Hydrological Sciences Journal, 2017, 62, 232-245.	2.6	8
263	Nierji reservoir flood forecasting based on a Data-Based Mechanistic methodology. Journal of Hydrology, 2018, 567, 227-237.	5.4	8
264	Validation and Equifinality. Simulation Foundations, Methods and Applications, 2019, , 791-809.	0.1	8
265	An epistemically uncertain walk through the rather fuzzy subject of observation and model uncertainties ¹ . Hydrological Processes, 2021, 35, e14012.	2.6	8
266	Towards the hydraulics of the hydroinformatics era. Journal of Hydraulic Research/De Recherches Hydrauliques, 2003, 41, 331-336.	1.7	7
267	Computationally efficient flood water level prediction (with uncertainty). , 2008, , 281-289.		7
268	Using microâ€catchment experiments for multiâ€local scale modelling of natureâ€based solutions. Hydrological Processes, 2021, 35, e14418.	2.6	7
269	Tribune LibreÂ: L'unicité de lieu, d'action et de temps. Revue Des Sciences De L'Eau, 2001, 14, 525-533.	0.2	6
270	Reply to â€~The emergence of a new kind of relativism in environmental modelling: a commentary' by Philippe Baveye. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 2147-2151.	2.1	6

#	Article	IF	CITATIONS
271	Long-term variations in the net inflow record for Lake Malawi. Hydrology Research, 2017, 48, 851-866.	2.7	6
272	Following tracer through the unsaturated zone using a multiple interacting pathways model: Implications from laboratory experiments. Hydrological Processes, 2019, 33, 2300-2313.	2.6	6
273	TOPMODEL: A critique. Hydrological Processes, 1997, 11, 1069-1085.	2.6	5
274	Reply [to "Comments on "On subsurface stormflow: Prediction with simple kinematic theory for saturated and unsaturated flows―by Keith Bevenâ€]. Water Resources Research, 1987, 23, 749-749.	4.2	4
275	A Framework for Uncertainty Analysis. , 2014, , 39-59.		4
276	What Really Happens at the End of the Rainbow? – Paying the Price for Reducing Uncertainty (Using) Tj ETQq(0.0 rgBT	/Oyerlock 10

277	Refining an ensemble of volcanic ash forecasts using satellite retrievals: Raikoke 2019. Atmospheric Chemistry and Physics, 2022, 22, 6115-6134.	4.9	4
278	The GLUE Methodology for Model Calibration with Uncertainty. , 2014, , 87-97.		3
279	On stochastic models and the single realization. Hydrological Processes, 2001, 15, 895-896.	2.6	2
280	Struggling with Epistemic Uncertainties in Environmental Modelling of Natural Hazards. , 2014, , .		2
281	GLUE based marine X-band weather radar data calibration and uncertainty estimation. Urban Water Journal, 2015, 12, 283-294.	2.1	2
282	Fuzzy rules based model for solute dispersion in an open channel dead zone. Journal of Hydroinformatics, 2002, 4, 39-51.	2.4	1
283	Analytical compensation between DTM grid resolution and effective values of staurated hydraulic conductivity within the TOPMODEL framework. Hydrological Processes, 1997, 11, 1331-1346.	2.6	1
284	Uncertainty Estimation in Phosphorus Models. , 2006, , 131-160.		1
285	On the concept of model structural error. Water Science and Technology, 2005, 52, 167-75.	2.5	1
286	Stormwater modeling. Journal of Hydrology, 1979, 44, 311-312.	5.4	0
287	UNCERTAINTY IN THE ESTIMATION OF CRITICAL LOADS: A PRACTICAL METHODOLOGY. Water, Air, and Soil Pollution, 1997, 98, 297-316.	2.4	0
288	Fuzzy rule-based model for contaminant transport in a natural river channel. Journal of Hydroinformatics, 2002, 4, 53-62.	2.4	0

#	Article	IF	CITATIONS
289	Reply to Discussion of "Perceptual models of uncertainty for socio-hydrological systems: a flood risk change example― Hydrological Sciences Journal, 2018, 63, 2001-2003.	2.6	0
290	Horton, Robert Elmer. Encyclopedia of Earth Sciences Series, 2021, , 1-2.	0.1	0