Sang-Hoon Bae

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11801946/publications.pdf

Version: 2024-02-01

55 8,731 41 53 papers citations h-index g-index

57 57 57 57 13966

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Uncovering material deformations via machine learning combined with four-dimensional scanning transmission electron microscopy. Npj Computational Materials, 2022, 8, .	8.7	15
2	Remote epitaxy. Nature Reviews Methods Primers, 2022, 2, .	21.2	47
3	Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence. Nature Electronics, 2022, 5, 386-393.	26.0	57
4	Impact of 2D–3D Heterointerface on Remote Epitaxial Interaction through Graphene. ACS Nano, 2021, 15, 10587-10596.	14.6	57
5	Long-term reliable physical health monitoring by sweat pore–inspired perforated electronic skins. Science Advances, 2021, 7, .	10.3	89
6	Laserâ€Irradiated Holey Grapheneâ€Supported Singleâ€Atom Catalyst towards Hydrogen Evolution and Oxygen Reduction. Advanced Energy Materials, 2021, 11, 2101619.	19.5	43
7	Ledge-directed epitaxy of continuously self-aligned single-crystalline nanoribbons of transition metal dichalcogenides. Nature Materials, 2020, 19, 1300-1306.	27.5	104
8	Hybrid Integrated Photomedical Devices for Wearable Vital Sign Tracking. ACS Sensors, 2020, 5, 1582-1588.	7.8	14
9	Graphene-assisted spontaneous relaxation towards dislocation-free heteroepitaxy. Nature Nanotechnology, 2020, 15, 272-276.	31.5	71
10	Heterogeneous integration of single-crystalline complex-oxide membranes. Nature, 2020, 578, 75-81.	27.8	218
11	Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface. Photonics Research, 2020, 8, 564.	7.0	74
12	On-chip mode-controlled waveguiding and versatile multiwavelength light routing using chip-integrated dielectric metasurface for arbitrary polarizations. , 2020, , .		O
13	Chip-scale mode-configurable light couplers and vortex beam generators using waveguide-integrated metasurface., 2020,,.		O
14	Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nature Communications, 2019, 10, 520.	12.8	405
15	Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nature Materials, 2019, 18, 550-560.	27.5	211
16	Path towards graphene commercialization from lab to market. Nature Nanotechnology, 2019, 14, 927-938.	31.5	235
17	Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nature Electronics, 2019, 2, 439-450.	26.0	155
18	Chip-integrated metasurface for versatile and multi-wavelength control of light couplings with independent phase and arbitrary polarization. Optics Express, 2019, 27, 16425.	3.4	33

#	Article	IF	Citations
19	The role of grain boundaries in perovskite solar cells. Materials Today Energy, 2018, 7, 149-160.	4.7	209
20	Polarity governs atomic interaction through two-dimensional materials. Nature Materials, 2018, 17, 999-1004.	27.5	182
21	Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science, 2018, 362, 665-670.	12.6	208
22	Enhanced interlayer neutral excitons and trions in trilayer van der Waals heterostructures. Npj 2D Materials and Applications, 2018, 2, .	7.9	44
23	High-performance perovskite/Cu(In,Ga)Se ₂ monolithic tandem solar cells. Science, 2018, 361, 904-908.	12.6	314
24	Extremely stable graphene electrodes doped with macromolecular acid. Nature Communications, 2018, 9, 2037.	12.8	96
25	Large-Area, Ultrathin Metal-Oxide Semiconductor Nanoribbon Arrays Fabricated by Chemical Lift-Off Lithography. Nano Letters, 2018, 18, 5590-5595.	9.1	27
26	Interface Engineering of Metal Oxide Semiconductors for Biosensing Applications. Advanced Materials Interfaces, 2017, 4, 1700020.	3.7	72
27	Halide Perovskites for Tandem Solar Cells. Journal of Physical Chemistry Letters, 2017, 8, 1999-2011.	4.6	47
28	The Interplay between Trap Density and Hysteresis in Planar Heterojunction Perovskite Solar Cells. Nano Letters, 2017, 17, 4270-4276.	9.1	226
29	Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4082-4086.	7.1	34
30	Highâ€Efficiency Organic Tandem Solar Cells With Effective Transition Metal Chelates Interconnecting Layer. Solar Rrl, 2017, 1, 1700139.	5.8	19
31	A Bifunctional Lewis Base Additive for Microscopic Homogeneity in Perovskite Solar Cells. CheM, 2017, 3, 290-302.	11.7	335
32	P-6: Aqueous Precursor Based Solution-Processed Metal Oxide Semiconductor. Digest of Technical Papers SID International Symposium, 2016, 47, 1140-1142.	0.3	1
33	Recent Progress in Materials and Devices toward Printable and Flexible Sensors. Advanced Materials, 2016, 28, 4415-4440.	21.0	643
34	Boosting Responsivity of Organic–Metal Oxynitride Hybrid Heterointerface Phototransistor. ACS Applied Materials & Diterfaces, 2016, 8, 14665-14670.	8.0	25
35	Printable Solar Cells from Advanced Solution-Processible Materials. CheM, 2016, 1, 197-219.	11.7	68
36	Approaching ultimate flexible organic light-emitting diodes using a graphene anode. NPG Asia Materials, 2016, 8, e303-e303.	7.9	55

#	Article	IF	CITATIONS
37	Morphology Evolution of High Efficiency Perovskite Solar Cells via Vapor Induced Intermediate Phases. Journal of the American Chemical Society, 2016, 138, 15710-15716.	13.7	102
38	Single Crystal Formamidinium Lead Iodide (FAPbl ₃): Insight into the Structural, Optical, and Electrical Properties. Advanced Materials, 2016, 28, 2253-2258.	21.0	781
39	Onâ€Fabrication Solidâ€State Nâ€Doping of Graphene by an Electronâ€Transporting Metal Oxide Layer for Efficient Inverted Organic Solar Cells. Advanced Energy Materials, 2016, 6, 1600172.	19.5	46
40	Value-added Synthesis of Graphene: Recycling Industrial Carbon Waste into Electrodes for High-Performance Electronic Devices. Scientific Reports, 2015, 5, 16710.	3. 3	36
41	Perovskite/polymer monolithic hybrid tandem solar cells utilizing a low-temperature, full solution process. Materials Horizons, 2015, 2, 203-211.	12.2	148
42	Improvement of work function and hole injection efficiency of graphene anode using CHF ₃ plasma treatment. 2D Materials, 2015, 2, 014002.	4.4	17
43	Printable Ultrathin Metal Oxide Semiconductor-Based Conformal Biosensors. ACS Nano, 2015, 9, 12174-12181.	14.6	126
44	Ultrahigh and Broad Spectral Photodetectivity of an Organic–Inorganic Hybrid Phototransistor for Flexible Electronics. Advanced Materials, 2015, 27, 6885-6891.	21.0	137
45	Hexaaqua Metal Complexes for Low-Temperature Formation of Fully Metal Oxide Thin-Film Transistors. Chemistry of Materials, 2015, 27, 5808-5812.	6.7	77
46	Graphene-Based Heat Spreader for Flexible Electronic Devices. IEEE Transactions on Electron Devices, 2014, 61, 4171-4175.	3.0	35
47	Selfâ€Healing Reduced Graphene Oxide Films by Supersonic Kinetic Spraying. Advanced Functional Materials, 2014, 24, 4986-4995.	14.9	151
48	Direct Light Pattern Integration of Low-Temperature Solution-Processed All-Oxide Flexible Electronics. ACS Nano, 2014, 8, 9680-9686.	14.6	128
49	Ultrathin Organic Solar Cells with Graphene Doped by Ferroelectric Polarization. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3299-3304.	8.0	91
50	Organic solar cells using CVD-grown graphene electrodes. Nanotechnology, 2014, 25, 014012.	2.6	81
51	Graphene-based transparent strain sensor. Carbon, 2013, 51, 236-242.	10.3	711
52	Graphene-P(VDF-TrFE) Multilayer Film for Flexible Applications. ACS Nano, 2013, 7, 3130-3138.	14.6	220
53	Loadâ€Controlled Roll Transfer of Oxide Transistors for Stretchable Electronics. Advanced Functional Materials, 2013, 23, 2024-2032.	14.9	78
54	Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photonics, 2012, 6, 105-110.	31.4	1,272

#	Article	IF	CITATIONS
55	Mechanical and Environmental Stability of Polymer Thin-Film-Coated Graphene. ACS Nano, 2012, 6, 2096-2103.	14.6	61