
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11800078/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Individual and developmental differences in semantic priming: Empirical and computational support for a single-mechanism account of lexical processing Psychological Review, 2000, 107, 786-823.                                             | 3.8 | 311       |
| 2  | The role of the basal ganglia and cerebellum in language processing. Brain Research, 2007, 1133, 136-144.                                                                                                                                    | 2.2 | 303       |
| 3  | Neural development of selective attention and response inhibition. NeuroImage, 2003, 20, 737-751.                                                                                                                                            | 4.2 | 300       |
| 4  | Functional Anatomy of Intra- and Cross-Modal Lexical Tasks. NeuroImage, 2002, 16, 7-22.                                                                                                                                                      | 4.2 | 294       |
| 5  | Larger deficits in brain networks for response inhibition than for visual selective attention in<br>attention deficit hyperactivity disorder (ADHD). Journal of Child Psychology and Psychiatry and Allied<br>Disciplines, 2005, 46, 94-111. | 5.2 | 280       |
| 6  | Modality independence of word comprehension. Human Brain Mapping, 2002, 16, 251-261.                                                                                                                                                         | 3.6 | 218       |
| 7  | Development of Brain Mechanisms for Processing Orthographic and Phonologic Representations.<br>Journal of Cognitive Neuroscience, 2004, 16, 1234-1249.                                                                                       | 2.3 | 215       |
| 8  | Sex differences in neural processing of language among children. Neuropsychologia, 2008, 46, 1349-1362.                                                                                                                                      | 1.6 | 188       |
| 9  | Deficient orthographic and phonological representations in children with dyslexia revealed by brain<br>activation patterns. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2006, 47,<br>1041-1050.                       | 5.2 | 173       |
| 10 | Shifts of Effective Connectivity within a Language Network during Rhyming and Spelling. Journal of Neuroscience, 2005, 25, 5397-5403.                                                                                                        | 3.6 | 158       |
| 11 | The Brain Network for Deductive Reasoning: A Quantitative Meta-analysis of 28 Neuroimaging Studies.<br>Journal of Cognitive Neuroscience, 2011, 23, 3483-3497.                                                                               | 2.3 | 149       |
| 12 | Effective brain connectivity in children with reading difficulties during phonological processing.<br>Brain and Language, 2008, 107, 91-101.                                                                                                 | 1.6 | 142       |
| 13 | Specialization of phonological and semantic processing in Chinese word reading. Brain Research, 2006, 1071, 197-207.                                                                                                                         | 2.2 | 140       |
| 14 | Relation between brain activation and lexical performance. Human Brain Mapping, 2003, 19, 155-169.                                                                                                                                           | 3.6 | 134       |
| 15 | Distinct representations of subtraction and multiplication in the neural systems for numerosity and language. Human Brain Mapping, 2011, 32, 1932-1947.                                                                                      | 3.6 | 131       |
| 16 | Reading unspaced text: Implications for theories of reading eye movements. Vision Research, 1994, 34, 1735-1766.                                                                                                                             | 1.4 | 127       |
| 17 | Quick, automatic, and general activation of orthographic and phonological representations in young readers Developmental Psychology, 1999, 35, 3-19.                                                                                         | 1.6 | 111       |
| 18 | Functional organization of activation patterns in children: Whole brain fMRI imaging during three<br>different cognitive tasks. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 1999, 23,<br>669-682.                        | 4.8 | 110       |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | The Development of Specialized Brain Systems in Reading and Oral-Language. Child Neuropsychology, 2001, 7, 119-141.                                                                                                   | 1.3 | 108       |
| 20 | Developmental and skill effects on the neural correlates of semantic processing to visually presented words. Human Brain Mapping, 2006, 27, 915-924.                                                                  | 3.6 | 107       |
| 21 | Developmental and Lesion Effects in Brain Activation During Sentence Comprehension and Mental<br>Rotation. Developmental Neuropsychology, 2000, 18, 139-169.                                                          | 1.4 | 105       |
| 22 | Developmental changes in activation and effective connectivity in phonological processing.<br>NeuroImage, 2007, 38, 564-575.                                                                                          | 4.2 | 99        |
| 23 | Developmental changes in the neural correlates of semantic processing. NeuroImage, 2006, 29, 1141-1149.                                                                                                               | 4.2 | 94        |
| 24 | Developmental dissociation in the neural responses to simple multiplication and subtraction problems. Developmental Science, 2014, 17, 537-552.                                                                       | 2.4 | 94        |
| 25 | The interaction between orthographic and phonological information in children: An fMRI study.<br>Human Brain Mapping, 2007, 28, 880-891.                                                                              | 3.6 | 91        |
| 26 | Developmental Differences in Visual and Auditory Processing of Complex Sentences. Child Development, 2000, 71, 981-1003.                                                                                              | 3.0 | 90        |
| 27 | Weaker top–down modulation from the left inferior frontal gyrus in children. NeuroImage, 2006, 33,<br>991-998.                                                                                                        | 4.2 | 89        |
| 28 | Developmental changes in brain regions involved in phonological and orthographic processing during spoken language processing. NeuroImage, 2008, 41, 623-635.                                                         | 4.2 | 80        |
| 29 | Children with reading difficulties show differences in brain regions associated with orthographic processing during spoken language processing. Brain Research, 2010, 1356, 73-84.                                    | 2.2 | 79        |
| 30 | Cultural Constraints on Brain Development: Evidence from a Developmental Study of Visual Word<br>Processing in Mandarin Chinese. Cerebral Cortex, 2010, 20, 1223-1233.                                                | 2.9 | 77        |
| 31 | Neural correlates of orthographic and phonological consistency effects in children. Human Brain<br>Mapping, 2008, 29, 1416-1429.                                                                                      | 3.6 | 73        |
| 32 | High Proficiency in a Second Language is Characterized by Greater Involvement of the First Language<br>Network: Evidence from Chinese Learners of English. Journal of Cognitive Neuroscience, 2013, 25,<br>1649-1663. | 2.3 | 70        |
| 33 | Children with reading disorder show modality independent brain abnormalities during semantic tasks. Neuropsychologia, 2007, 45, 775-783.                                                                              | 1.6 | 67        |
| 34 | Developmental Increase in Top–Down and Bottom–Up Processing in a Phonological Task: An Effective<br>Connectivity, fMRI Study. Journal of Cognitive Neuroscience, 2009, 21, 1135-1145.                                 | 2.3 | 67        |
| 35 | Developmental differences of neurocognitive networks for phonological and semantic processing in Chinese word reading. Human Brain Mapping, 2009, 30, 797-809.                                                        | 3.6 | 67        |
| 36 | Children with mathematical learning disability fail in recruiting verbal and numerical brain regions when solving simple multiplication problems. Cortex, 2014, 57, 143-155.                                          | 2.4 | 67        |

| #  | Article                                                                                                                                                                                     | lF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Association of Rapid Temporal Perception With Orthographic and Phonological Processing in Children and Adults With Reading Impairment. Scientific Studies of Reading, 2000, 4, 101-132. | 2.0 | 66        |
| 38 | Neural correlates of mapping from phonology to orthography in children performing an auditory spelling task. Developmental Science, 2007, 10, 441-451.                                      | 2.4 | 66        |
| 39 | Modality-specific and -independent developmental differences in the neural substrate for lexical processing. Journal of Neurolinguistics, 2003, 16, 383-405.                                | 1.1 | 65        |
| 40 | The direct segment of the arcuate fasciculus is predictive of longitudinal reading change.<br>Developmental Cognitive Neuroscience, 2015, 13, 68-74.                                        | 4.0 | 65        |
| 41 | Bidirectional Connectivity between Hemispheres Occurs at Multiple Levels in Language Processing But<br>Depends on Sex. Journal of Neuroscience, 2010, 30, 11576-11585.                      | 3.6 | 64        |
| 42 | The role of inferior frontal gyrus and inferior parietal lobule in semantic processing of Chinese characters. Experimental Brain Research, 2009, 198, 465-475.                              | 1.5 | 62        |
| 43 | Differential prefrontal–temporal neural correlates of semantic processing in children. Brain and<br>Language, 2006, 99, 226-235.                                                            | 1.6 | 61        |
| 44 | Reading acquisition reorganizes the phonological awareness network only in alphabetic writing systems. Human Brain Mapping, 2013, 34, 3354-3368.                                            | 3.6 | 56        |
| 45 | Developmental increases in effective connectivity to brain regions involved in phonological processing during tasks with orthographic demands. Brain Research, 2008, 1189, 78-89.           | 2.2 | 55        |
| 46 | Longitudinal changes in reading network connectivity related to skill improvement. NeuroImage, 2017, 158, 90-98.                                                                            | 4.2 | 54        |
| 47 | Perceiving fingers in single-digit arithmetic problems. Frontiers in Psychology, 2015, 6, 226.                                                                                              | 2.1 | 50        |
| 48 | Early-life stress exposure associated with altered prefrontal resting-state fMRI connectivity in young children. Developmental Cognitive Neuroscience, 2016, 19, 107-114.                   | 4.0 | 50        |
| 49 | Differential effects of orthographic and phonological consistency in cortex for children with and without reading impairment. Neuropsychologia, 2008, 46, 3210-3224.                        | 1.6 | 48        |
| 50 | Similar alterations in brain function for phonological and semantic processing to visual characters in Chinese dyslexia. Neuropsychologia, 2012, 50, 2224-2232.                             | 1.6 | 48        |
| 51 | Chinese dyslexics show neural differences in morphological processing. Developmental Cognitive Neuroscience, 2013, 6, 40-50.                                                                | 4.0 | 48        |
| 52 | Sensitive period for whiteâ€matter connectivity of superior temporal cortex in deaf people. Human<br>Brain Mapping, 2012, 33, 349-359.                                                      | 3.6 | 46        |
| 53 | Fillers and spaces in text: The importance of word recognition during reading. Vision Research, 1997, 37, 2899-2914.                                                                        | 1.4 | 45        |
| 54 | Modality- and Task-specific Brain Regions Involved in Chinese Lexical Processing. Journal of Cognitive<br>Neuroscience, 2009, 21, 1473-1487.                                                | 2.3 | 45        |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The brain adapts to orthography with experience: evidence from English and Chinese. Developmental Science, 2015, 18, 785-798.                                                              | 2.4 | 45        |
| 56 | Prediction of Reading Skill Several Years Later Depends on Age and Brain Region: Implications for Developmental Models of Reading. Journal of Neuroscience, 2011, 31, 9641-9648.           | 3.6 | 44        |
| 57 | Parental socioeconomic status and the neural basis of arithmetic: differential relations to verbal and visuoâ€spatial representations. Developmental Science, 2015, 18, 799-814.           | 2.4 | 42        |
| 58 | Development of brain networks involved in spoken word processing of Mandarin Chinese.<br>NeuroImage, 2011, 57, 750-759.                                                                    | 4.2 | 41        |
| 59 | Item-specific and generalization effects on brain activation when learning Chinese characters.<br>Neuropsychologia, 2008, 46, 1864-1876.                                                   | 1.6 | 40        |
| 60 | Differences between child and adult largeâ€scale functional brain networks for reading tasks. Human<br>Brain Mapping, 2018, 39, 662-679.                                                   | 3.6 | 39        |
| 61 | More modeling but still no stages: Reply to Borowsky and Besner Psychological Review, 2006, 113, 196-200.                                                                                  | 3.8 | 36        |
| 62 | Neural Correlates of Math Gains Vary Depending on Parental Socioeconomic Status (SES). Frontiers in<br>Psychology, 2016, 7, 892.                                                           | 2.1 | 36        |
| 63 | Reading skill–fractional anisotropy relationships in visuospatial tracts diverge depending on socioeconomic status. Developmental Science, 2016, 19, 673-685.                              | 2.4 | 36        |
| 64 | Cross-modal integration in the brain is related to phonological awareness only in typical readers, not<br>in those with reading difficulty. Frontiers in Human Neuroscience, 2013, 7, 388. | 2.0 | 35        |
| 65 | Altered Intra- and Inter-Regional Synchronization of Superior Temporal Cortex in Deaf People.<br>Cerebral Cortex, 2013, 23, 1988-1996.                                                     | 2.9 | 34        |
| 66 | Individual Differences in Crossmodal Brain Activity Predict Arcuate Fasciculus Connectivity in Developing Readers. Journal of Cognitive Neuroscience, 2014, 26, 1331-1346.                 | 2.3 | 33        |
| 67 | The Differential Role of Verbal and Spatial Working Memory in the Neural Basis of Arithmetic.<br>Developmental Neuropsychology, 2014, 39, 440-458.                                         | 1.4 | 31        |
| 68 | Development of the understanding of the polysemous meanings of the mental-state verb know.<br>Cognitive Development, 1995, 10, 529-549.                                                    | 1.3 | 30        |
| 69 | Acquisition of the mental state verb know by 2- to 5-year-old children. Journal of Psycholinguistic<br>Research, 1997, 26, 581-603.                                                        | 1.3 | 30        |
| 70 | Multimodal Lexical Processing in Auditory Cortex Is Literacy Skill Dependent. Cerebral Cortex, 2014, 24, 2464-2475.                                                                        | 2.9 | 30        |
| 71 | Fluency in symbolic arithmetic refines the approximate number system in parietal cortex. Human Brain<br>Mapping, 2018, 39, 3956-3971.                                                      | 3.6 | 30        |
| 72 | Role of the cognitive internal state lexicon in reading comprehension Journal of Educational<br>Psychology, 1994, 86, 413-422.                                                             | 2.9 | 28        |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Brain lateralization of phonological awareness varies by maternal education. Developmental Science, 2019, 22, e12807.                                                                       | 2.4 | 26        |
| 74 | Fractionating the Neural Substrates of Transitive Reasoning: Task-Dependent Contributions of Spatial and Verbal Representations. Cerebral Cortex, 2013, 23, 499-507.                        | 2.9 | 25        |
| 75 | Skill dependent audiovisual integration in the fusiform induces repetition suppression. Brain and Language, 2015, 141, 110-123.                                                             | 1.6 | 25        |
| 76 | Reading skill related to left ventral occipitotemporal cortex during a phonological awareness task in<br>5–6-year old children. Developmental Cognitive Neuroscience, 2018, 30, 116-122.    | 4.0 | 25        |
| 77 | Age, sex, and verbal abilities affect location of linguistic connectivity in ventral visual pathway. Brain and Language, 2013, 124, 184-193.                                                | 1.6 | 24        |
| 78 | The neural bases of the multiplication problem-size effect across countries. Frontiers in Human Neuroscience, 2013, 7, 189.                                                                 | 2.0 | 24        |
| 79 | Neural representations of phonology in temporal cortex scaffold longitudinal reading gains in 5- to<br>7-year-old children. NeuroImage, 2020, 207, 116359.                                  | 4.2 | 24        |
| 80 | Brain-behavior correlation in children depends on the neurocognitive network. Human Brain<br>Mapping, 2004, 23, 99-108.                                                                     | 3.6 | 23        |
| 81 | Much ado about nothing: the place of space in text. Vision Research, 1996, 36, 465-470.                                                                                                     | 1.4 | 22        |
| 82 | Neural specialization of phonological and semantic processing in young children. Human Brain<br>Mapping, 2018, 39, 4334-4348.                                                               | 3.6 | 22        |
| 83 | Weighing the Cost and Benefit of Transcranial Direct Current Stimulation on Different Reading Subskills. Frontiers in Neuroscience, 2016, 10, 262.                                          | 2.8 | 21        |
| 84 | Development and Disorders of Neurocognitive Systems for Oral Language and Reading. Learning<br>Disability Quarterly, 2001, 24, 205-215.                                                     | 1.3 | 20        |
| 85 | Functional neuroimaging of visuospatial working memory tasks enables accurate detection of attention deficit and hyperactivity disorder. NeuroImage: Clinical, 2015, 9, 244-252.            | 2.7 | 20        |
| 86 | Task dependent lexicality effects support interactive models of reading: A meta-analytic neuroimaging<br>review. Neuropsychologia, 2015, 67, 148-158.                                       | 1.6 | 20        |
| 87 | Dynamic spatial organization of the occipito-temporal word form area for second language processing. Neuropsychologia, 2017, 103, 20-28.                                                    | 1.6 | 18        |
| 88 | Development of Lexical and Sentence Level Context Effects for Dominant and Subordinate Word<br>Meanings of Homonyms. Journal of Psycholinguistic Research, 2006, 35, 531-554.               | 1.3 | 17        |
| 89 | Testing for a cultural influence on reading for meaning in the developing brain: the neural basis of semantic processing in Chinese children. Frontiers in Human Neuroscience, 2009, 3, 27. | 2.0 | 17        |
| 90 | Developmental changes in the inferior frontal cortex for selecting semantic representations.<br>Developmental Cognitive Neuroscience, 2011, 1, 338-350.                                     | 4.0 | 17        |

| #   | Article                                                                                                                                                                                | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | The Involvement of Occipital and Inferior Frontal Cortex in the Phonological Learning of Chinese Characters. Journal of Cognitive Neuroscience, 2011, 23, 1998-2012.                   | 2.3 | 17        |
| 92  | Dyslexia on a continuum: A complex network approach. PLoS ONE, 2018, 13, e0208923.                                                                                                     | 2.5 | 17        |
| 93  | Music Rehearsal Increases the Perceptual Span for Notation. Music Perception, 2009, 26, 303-320.                                                                                       | 1.1 | 15        |
| 94  | Feedback associated with expectation for larger-reward improves visuospatial working memory performances in children with ADHD. Developmental Cognitive Neuroscience, 2015, 14, 38-49. | 4.0 | 15        |
| 95  | A longitudinal neuroimaging dataset on arithmetic processing in school children. Scientific Data, 2019, 6, 190040.                                                                     | 5.3 | 15        |
| 96  | Onset and Rime Structure Influences Naming but Not Early Word Identification in Children and Adults. Scientific Studies of Reading, 2002, 6, 1-23.                                     | 2.0 | 14        |
| 97  | Changes in Task-Related Functional Connectivity across Multiple Spatial Scales Are Related to Reading<br>Performance. PLoS ONE, 2013, 8, e59204.                                       | 2.5 | 14        |
| 98  | Developmental differences in the influence of phonological similarity on spoken word processing in<br>Mandarin Chinese. Brain and Language, 2014, 138, 38-50.                          | 1.6 | 14        |
| 99  | Longitudinal Task-Related Functional Connectivity Changes Predict Reading Development. Frontiers in Psychology, 2018, 9, 1754.                                                         | 2.1 | 14        |
| 100 | Automatic semantic influence on early visual word recognition in the ventral occipito-temporal cortex. Neuropsychologia, 2019, 133, 107188.                                            | 1.6 | 14        |
| 101 | Temporo-parietal connectivity uniquely predicts reading change from childhood to adolescence.<br>NeuroImage, 2016, 142, 126-134.                                                       | 4.2 | 13        |
| 102 | Lack of improvement in multiplication is associated with reverting from verbal retrieval to numerical operations. NeuroImage, 2018, 183, 859-871.                                      | 4.2 | 13        |
| 103 | Structural correlates of literacy difficulties in the second language: Evidence from<br>Mandarin-speaking children learning English. NeuroImage, 2018, 179, 288-297.                   | 4.2 | 13        |
| 104 | Temporo-frontal activation during phonological processing predicts gains in arithmetic facts in young children. Developmental Cognitive Neuroscience, 2019, 40, 100735.                | 4.0 | 13        |
| 105 | Finger Representation and Finger-Based Strategies in the Acquisition of Number Meaning and Arithmetic. , 2016, , 109-139.                                                              |     | 12        |
| 106 | Parietotemporal Stimulation Affects Acquisition of Novel Grapheme-Phoneme Mappings in Adult<br>Readers. Frontiers in Human Neuroscience, 2018, 12, 109.                                | 2.0 | 12        |
| 107 | Reciprocal relations between reading skill and the neural basis of phonological awareness in 7- to<br>9-year-old children. NeuroImage, 2021, 236, 118083.                              | 4.2 | 12        |
| 108 | A longitudinal neuroimaging dataset on multisensory lexical processing in school-aged children.<br>Scientific Data, 2019, 6, 329.                                                      | 5.3 | 11        |

| #   | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Neural correlates of priming effects in children during spoken word processing with orthographic demands. Brain and Language, 2010, 114, 80-89.                                                                             | 1.6 | 10        |
| 110 | Brain activation during phonological and semantic processing of Chinese characters in deaf signers.<br>Frontiers in Human Neuroscience, 2014, 8, 211.                                                                       | 2.0 | 10        |
| 111 | Distributed neural representations of logical arguments in schoolâ€age children. Human Brain<br>Mapping, 2015, 36, 996-1009.                                                                                                | 3.6 | 10        |
| 112 | Neural correlates of the lexicality effect in children. Brain and Language, 2017, 175, 64-70.                                                                                                                               | 1.6 | 10        |
| 113 | Developmental changes of association strength and categorical relatedness on semantic processing in the brain. Brain and Language, 2019, 189, 10-19.                                                                        | 1.6 | 9         |
| 114 | Both frontal and temporal cortex exhibit phonological and semantic specialization during spoken<br>language processing in 7―to 8â€yearâ€old children. Human Brain Mapping, 2021, 42, 3534-3546.                             | 3.6 | 9         |
| 115 | Developmental changes in the neural influence of sublexical information on semantic processing.<br>Neuropsychologia, 2015, 73, 25-34.                                                                                       | 1.6 | 8         |
| 116 | Syntactic and Semantic Specialization and Integration in 5- to 6-Year-Old Children during Auditory Sentence Processing. Journal of Cognitive Neuroscience, 2020, 32, 36-49.                                                 | 2.3 | 8         |
| 117 | Developmental differences in neural connectivity for semantic processing in youths with autism.<br>Journal of Child Psychology and Psychiatry and Allied Disciplines, 2021, 62, 1090-1099.                                  | 5.2 | 8         |
| 118 | A longitudinal neuroimaging dataset on language processing in children ages 5, 7, and 9 years old.<br>Scientific Data, 2022, 9, 4.                                                                                          | 5.3 | 8         |
| 119 | Large grain instruction and phonological awareness skill influence rime sensitivity, processing speed, and early decoding skill in adult L2 learners. Reading and Writing, 2015, 28, 917-938.                               | 1.7 | 7         |
| 120 | Attitudes Toward Math Are Differentially Related to the Neural Basis of Multiplication Depending on<br>Math Skill. Learning Disability Quarterly, 2020, 43, 179-191.                                                        | 1.3 | 7         |
| 121 | Functional parcellation of the right cerebellar lobule VI in children with normal or impaired reading.<br>Neuropsychologia, 2020, 148, 107630.                                                                              | 1.6 | 7         |
| 122 | Letter fluency in 7-8-year-old children is related to the anterior, but not posterior, ventral<br>occipito-temporal cortex during an auditory phonological task. Developmental Cognitive<br>Neuroscience, 2021, 47, 100898. | 4.0 | 7         |
| 123 | Neurocognitive mechanisms explaining the role of math attitudes in predicting children's<br>improvement in multiplication skill. Cognitive, Affective and Behavioral Neuroscience, 2021, 21, 917-935.                       | 2.0 | 7         |
| 124 | Effect of Handwriting on Visual Word Recognition in Chinese Bilingual Children and Adults.<br>Frontiers in Psychology, 2021, 12, 628160.                                                                                    | 2.1 | 7         |
| 125 | Reading Disability in Chinese Children Learning English as an L2. Child Development, 2021, 92, e126-e142.                                                                                                                   | 3.0 | 6         |
| 126 | Neurocognitive basis of deductive reasoning in children varies with parental education. Human Brain<br>Mapping, 2021, 42, 3396-3410.                                                                                        | 3.6 | 6         |

| #   | Article                                                                                                                                                                               | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Early Engagement of Parietal Cortex for Subtraction Solving Predicts Longitudinal Gains in<br>Behavioral Fluency in Children. Frontiers in Human Neuroscience, 2020, 14, 163.         | 2.0 | 5         |
| 128 | Semantic and syntactic specialization during auditory sentence processing in 7-8-year-old children.<br>Cortex, 2021, 145, 169-186.                                                    | 2.4 | 5         |
| 129 | Children With Reading Difficulty Rely on Unimodal Neural Processing for Phonemic Awareness.<br>Frontiers in Human Neuroscience, 2019, 13, 390.                                        | 2.0 | 4         |
| 130 | A neuroimaging dataset on working memory and reward processing in children with and without ADHD. Data in Brief, 2020, 31, 105801.                                                    | 1.0 | 4         |
| 131 | Gray matter volume in left intraparietal sulcus predicts longitudinal gains in subtraction skill in elementary school. NeuroImage, 2021, 235, 118021.                                 | 4.2 | 4         |
| 132 | Left and Right Arcuate Fasciculi Are Uniquely Related to Word Reading Skills in Chinese-English<br>Bilingual Children. Neurobiology of Language (Cambridge, Mass ), 2022, 3, 109-131. | 3.1 | 4         |
| 133 | Early Phonological Neural Specialization Predicts Later Growth in Word Reading Skills. Frontiers in<br>Human Neuroscience, 2021, 15, 674119.                                          | 2.0 | 4         |
| 134 | Temporal cortex activation explains children's improvement in math attitudes. Child Development,<br>2022, 93, 1012-1029.                                                              | 3.0 | 4         |
| 135 | A neuroimaging dataset on orthographic, phonological and semantic word processing in school-aged children. Data in Brief, 2020, 28, 105091.                                           | 1.0 | 2         |
| 136 | A neuroimaging dataset of deductive reasoning in school-aged children. Data in Brief, 2020, 33, 106405.                                                                               | 1.0 | 2         |
| 137 | Neuro-cognitive development of semantic and syntactic bootstrapping in 6- to 7.5-year-old children.<br>NeuroImage, 2021, 241, 118416.                                                 | 4.2 | 2         |
| 138 | A neuroimaging dataset on response inhibition and selective attention in adults and children with and without ADHD. Data in Brief, 2021, 37, 107158.                                  | 1.0 | 0         |
| 139 | Developmental differences of large-scale functional brain networks for spoken word processing.<br>Brain and Language, 2022, 231, 105149.                                              | 1.6 | 0         |