
Laurent Veyre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11799200/publications.pdf Version: 2024-02-01

LALIDENT VEVDE

#	Article	IF	CITATIONS
1	Mn ₂ (CO) ₁₀ and UV light: a promising combination for regioselective alkene hydrosilylation at low temperature. Chemical Communications, 2022, 58, 4091-4094.	4.1	13
2	Highly dispersed silica-supported iridium and iridium–aluminium catalysts for methane activation prepared <i>via</i> surface organometallic chemistry. Chemical Communications, 2022, 58, 8214-8217.	4.1	3
3	Development of Pd Supported Catalysts Using Thiolâ€Functionalized Mesoporous Silica Frameworks: Application to the Chemo†and Regioselective C â€3 Arylation of Freeâ€Indole. European Journal of Inorganic Chemistry, 2021, 2021, 814-820.	2.0	1
4	Strongly Polarized Iridium ^{Ĵ´â´`} –Aluminum ^{δ+} Pairs: Unconventional Reactivity Patterns Including CO ₂ Cooperative Reductive Cleavage. Journal of the American Chemical Society, 2021, 143, 4844-4856.	13.7	31
5	Stepwise construction of silica-supported tantalum/iridium heteropolymetallic catalysts using surface organometallic chemistry. Journal of Catalysis, 2020, 392, 287-301.	6.2	11
6	Developing a Highly Active Catalytic System Based on Cobalt Nanoparticles for Terminal and Internal Alkene Hydrosilylation. Journal of Organic Chemistry, 2020, 85, 11732-11740.	3.2	26
7	Silica-supported Z-selective Ru olefin metathesis catalysts. Molecular Catalysis, 2020, 483, 110743.	2.0	9
8	Metal–Metal Synergy in Well-Defined Surface Tantalum–Iridium Heterobimetallic Catalysts for H/D Exchange Reactions. Journal of the American Chemical Society, 2019, 141, 19321-19335.	13.7	33
9	Supported Ru olefin metathesis catalysts <i>via</i> a thiolate tether. Dalton Transactions, 2019, 48, 2886-2890.	3.3	5
10	Alkene hydrosilylation with supported and unsupported Ni nanoparticles: strong influence of the Ni environment on activity and selectivity. Catalysis Science and Technology, 2019, 9, 1555-1558.	4.1	17
11	Tailored Microstructured Hyperpolarizing Matrices for Optimal Magnetic Resonance Imaging. Angewandte Chemie - International Edition, 2018, 57, 7453-7457.	13.8	24
12	Nanostructured equimolar ceria-praseodymia for NOx-assisted soot oxidation: Insight into Pr dominance over Pt nanoparticles and metal–support interaction. Applied Catalysis B: Environmental, 2018, 226, 147-161.	20.2	66
13	Early/Late Heterobimetallic Tantalum/Rhodium Species Assembled Through a Novel Bifunctional NHCâ€OH Ligand. Chemistry - A European Journal, 2018, 24, 4361-4370.	3.3	33
14	Tailored Microstructured Hyperpolarizing Matrices for Optimal Magnetic Resonance Imaging. Angewandte Chemie, 2018, 130, 7575-7579.	2.0	13
15	Pt nanoparticles immobilized in mesostructured silica: a non-leaching catalyst for 1-octene hydrosilylation. Chemical Communications, 2017, 53, 2962-2965.	4.1	33
16	Ceria-supported small Pt and Pt 3 Sn nanoparticles for NO x -assisted soot oxidation. Applied Catalysis B: Environmental, 2017, 209, 295-310.	20.2	67
17	Tailored Polarizing Hybrid Solids with Nitroxide Radicals Localized in Mesostructured Silica Walls. Helvetica Chimica Acta, 2017, 100, e1700101.	1.6	24
18	CuO nanoparticles supported by ceria for NO x -assisted soot oxidation: insight into catalytic activity and sintering. Applied Catalysis B: Environmental, 2017, 216, 41-58.	20.2	72

LAURENT VEYRE

#	Article	IF	CITATIONS
19	Phenylazide Hybrid‧ilica – Polarization Platform for Dynamic Nuclear Polarization at Cryogenic Temperatures. Helvetica Chimica Acta, 2017, 100, e1600122.	1.6	6
20	Enhanced formation of >C1 Products in Electroreduction of CO ₂ by Adding a CO ₂ Adsorption Component to a Gasâ€Diffusion Layerâ€Type Catalytic Electrode. ChemSusChem, 2017, 10, 4442-4446.	6.8	50
21	A Solid Iridium Catalyst for Diastereoselective Hydrogenation. Chemistry - A European Journal, 2017, 23, 16171-16173.	3.3	1
22	Role of small Cu nanoparticles in the behaviour of nanocarbon-based electrodes for the electrocatalytic reduction of CO2. Journal of CO2 Utilization, 2017, 21, 534-542.	6.8	49
23	Low-temperature and scalable CVD route to WS2 monolayers on SiO2/Si substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	13
24	A novel 2-step ALD route to ultra-thin MoS ₂ films on SiO ₂ through a surface organometallic intermediate. Nanoscale, 2017, 9, 538-546.	5.6	55
25	Origin of the Improved Performance in Lanthanumâ€doped Silicaâ€supported Ni Catalysts. ChemCatChem, 2017, 9, 586-596.	3.7	15
26	Monolayer Doping of Silicon through Grafting a Tailored Molecular Phosphorus Precursor onto Oxide-Passivated Silicon Surfaces. Chemistry of Materials, 2016, 28, 3634-3640.	6.7	50
27	Hyperpolarization of Frozen Hydrocarbon Gases by Dynamic Nuclear Polarization at 1.2 K. Journal of Physical Chemistry Letters, 2016, 7, 3235-3239.	4.6	18
28	Active and Recyclable Polyethylene‣upported Iridiumâ€(N―Heterocyclic Carbene) Catalyst for Hydrogen/Deuterium Exchange Reactions. Advanced Synthesis and Catalysis, 2016, 358, 2317-2323.	4.3	10
29	Iridium(I)/Nâ€Heterocyclic Carbene Hybrid Materials: Surface Stabilization of Lowâ€Valent Iridium Species for High Catalytic Hydrogenation Performance. Angewandte Chemie - International Edition, 2015, 54, 12937-12941.	13.8	33
30	CO PROX over Pt–Sn/Al2O3: A combined kinetic and in situ DRIFTS study. Catalysis Today, 2015, 258, 241-246.	4.4	41
31	Functionalization of Silica Nanoparticles and Native Silicon Oxide with Tailored Boron-Molecular Precursors for Efficient and Predictive <i>p</i> Doping of Silicon. Journal of Physical Chemistry C, 2015, 119, 13750-13757.	3.1	25
32	Platinum nanoparticles in suspension are as efficient as Karstedt's complex for alkene hydrosilylation. Chemical Communications, 2015, 51, 16194-16196.	4.1	41
33	Facile preparation of small and narrowly distributed platinum nanoparticles in the absence of H ₂ from Pt(<scp>ii</scp>) and Pt(0) molecular precursors using trihydrogeno(octyl)silane. New Journal of Chemistry, 2014, 38, 5952-5956.	2.8	4
34	Hybrid polarizing solids for pure hyperpolarized liquids through dissolution dynamic nuclear polarization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14693-14697.	7.1	93
35	Direct evidence by in situ IR CO monitoring of the formation and the surface segregation of a Pt–Sn alloy. Chemical Communications, 2014, 50, 8590.	4.1	51
36	Preparation of Sn-doped 2–3nm Ni nanoparticles supported on SiO2 via surface organometallic chemistry for low temperature dry reforming catalyst: The effect of tin doping on activity, selectivity and stability. Catalysis Today, 2014, 235, 237-244.	4.4	20

LAURENT VEYRE

#	Article	IF	CITATIONS
37	A Wellâ€Defined Pd Hybrid Material for the <i>Z</i> â€Selective Semihydrogenation of Alkynes Characterized at the Molecular Level by DNP SENS. Chemistry - A European Journal, 2013, 19, 12234-12238.	3.3	61
38	Solid-Phase Polarization Matrixes for Dynamic Nuclear Polarization from Homogeneously Distributed Radicals in Mesostructured Hybrid Silica Materials. Journal of the American Chemical Society, 2013, 135, 15459-15466.	13.7	56
39	Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles. Journal of Catalysis, 2013, 297, 27-34.	6.2	224
40	From well-defined Pt(ii) surface species to the controlled growth of silica supported Pt nanoparticles. Dalton Transactions, 2013, 42, 238-248.	3.3	41
41	Evidence for Metal–Surface Interactions and Their Role in Stabilizing Well-Defined Immobilized Ru–NHC Alkene Metathesis Catalysts. Journal of the American Chemical Society, 2013, 135, 3193-3199.	13.7	96
42	Nickel–Silicide Colloid Prepared under Mild Conditions as a Versatile Ni Precursor for More Efficient CO ₂ Reforming of CH ₄ Catalysts. Journal of the American Chemical Society, 2012, 134, 20624-20627.	13.7	84
43	A Slowly Relaxing Rigid Biradical for Efficient Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy: Expeditious Characterization of Functional Group Manipulation in Hybrid Materials. Journal of the American Chemical Society, 2012, 134, 2284-2291.	13.7	182
44	Singleâ€Phase Heterogeneous Pt ₃ Sn Catalyst Synthesized by Roomâ€Temperature Selfâ€Assembly. ChemCatChem, 2012, 4, 1729-1732.	3.7	8
45	Heterolytic cleavage of ammonia N–H bond by bifunctional activation in silica-grafted single site Ta(V) imido amido surface complex. Importance of the outer sphere NH3 assistance. New Journal of Chemistry, 2011, 35, 1011.	2.8	11
46	Fast Characterization of Functionalized Silica Materials by Silicon-29 Surface-Enhanced NMR Spectroscopy Using Dynamic Nuclear Polarization. Journal of the American Chemical Society, 2011, 133, 2104-2107.	13.7	254
47	A highly ordered mesostructured material containing regularly distributed phenols: preparation and characterization at a molecular level through ultra-fast magic angle spinning proton NMR spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 4230.	2.8	13
48	Domination of Local Environment Over Pore Confinement Effects on the Catalytic Performances of Single-Site Cp*IrIII-NHC Heterogeneous vs. Homogeneous H/D Exchange Catalysts. European Journal of Inorganic Chemistry, 2010, 2010, 5005-5010.	2.0	19
49	Highly efficient aerobic oxidation of alkenes over unsupported nanogold. Chemical Communications, 2010, 46, 5361.	4.1	36
50	Unexpected, spontaneous and selective formation of colloidal Pt3Sn nanoparticles using organometallic Pt and Sn complexes. Chemical Communications, 2010, 46, 4722.	4.1	22
51	Tailored Ruâ€NHC Heterogeneous Catalysts for Alkene Metathesis. Chemistry - A European Journal, 2009, 15, 11820-11823.	3.3	70
52	H/D Exchange on Silica-Grafted Tantalum(V) Imido Amido [(≡SiO)2Ta(V)(NH)(NH2)] Synthesized from Either Ammonia or Dinitrogen: IR and DFT Evidence for Heterolytic Splitting of D2. Topics in Catalysis, 2009, 52, 1482-1491.	2.8	14
53	Regularly Distributed and Fully Accessible Pt Nanoparticles in Silica Pore Channels via the Controlled Growth of a Mesostructured Matrix around Pt Colloids. Chemistry of Materials, 2009, 21, 775-777.	6.7	30
54	A Tailored Organometallic–Inorganic Hybrid Mesostructured Material: A Route to a Wellâ€Defined, Active, and Reusable Heterogeneous Iridiumâ€NHC Catalyst for H/D Exchange. Angewandte Chemie - International Edition, 2008, 47, 8654-8656.	13.8	75

LAURENT VEYRE

#	Article	IF	CITATIONS
55	Well-Defined Surface Imido Amido Tantalum(V) Species from Ammonia and Silica-Supported Tantalum Hydrides. Journal of the American Chemical Society, 2007, 129, 176-186.	13.7	79
56	Homologation of Propane Catalyzed by Oxide-Supported Zirconium Dihydride and Dialkyl Complexes. Angewandte Chemie - International Edition, 2007, 46, 2288-2290.	13.8	45
57	Molecular Understanding of the Formation of Surface Zirconium Hydrides upon Thermal Treatment under Hydrogen of [(â‹®SiO)Zr(CH2tBu)3] by Using Advanced Solid-State NMR Techniques. Journal of the American Chemical Society, 2004, 126, 12541-12550.	13.7	127
58	Preparation and characterization of zirconium containing mesoporous silicas. II. Grafting reaction of tetraneopentyl zirconium on MCM-41 and characterization of the grafted species and of the resulting materials. Microporous and Mesoporous Materials, 2003, 66, 169-179.	4.4	26
59	The low temperature synthesis of very small and nonâ€crystalline ironâ€based nanoparticles: application in alkene hydrosilylation European Journal of Inorganic Chemistry, 0, , .	2.0	1