Laurent Veyre

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11799200/publications.pdf

Version: 2024-02-01

		172457	182427
59	2,656	29	51
papers	citations	h-index	g-index
62	62	62	3449
all docs	docs citations	times ranked	citing authors
62 all docs	62 docs citations	62 times ranked	3449 citing authors

#	Article	IF	CITATIONS
1	Fast Characterization of Functionalized Silica Materials by Silicon-29 Surface-Enhanced NMR Spectroscopy Using Dynamic Nuclear Polarization. Journal of the American Chemical Society, 2011, 133, 2104-2107.	13.7	254
2	Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles. Journal of Catalysis, 2013, 297, 27-34.	6.2	224
3	A Slowly Relaxing Rigid Biradical for Efficient Dynamic Nuclear Polarization Surface-Enhanced NMR Spectroscopy: Expeditious Characterization of Functional Group Manipulation in Hybrid Materials. Journal of the American Chemical Society, 2012, 134, 2284-2291.	13.7	182
4	Molecular Understanding of the Formation of Surface Zirconium Hydrides upon Thermal Treatment under Hydrogen of [(â‹®SiO)Zr(CH2tBu)3] by Using Advanced Solid-State NMR Techniques. Journal of the American Chemical Society, 2004, 126, 12541-12550.	13.7	127
5	Evidence for Metal–Surface Interactions and Their Role in Stabilizing Well-Defined Immobilized Ru–NHC Alkene Metathesis Catalysts. Journal of the American Chemical Society, 2013, 135, 3193-3199.	13.7	96
6	Hybrid polarizing solids for pure hyperpolarized liquids through dissolution dynamic nuclear polarization. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14693-14697.	7.1	93
7	Nickel–Silicide Colloid Prepared under Mild Conditions as a Versatile Ni Precursor for More Efficient CO ₂ Reforming of CH ₄ Catalysts. Journal of the American Chemical Society, 2012, 134, 20624-20627.	13.7	84
8	Well-Defined Surface Imido Amido Tantalum(V) Species from Ammonia and Silica-Supported Tantalum Hydrides. Journal of the American Chemical Society, 2007, 129, 176-186.	13.7	79
9	A Tailored Organometallic–Inorganic Hybrid Mesostructured Material: A Route to a Wellâ€Defined, Active, and Reusable Heterogeneous Iridiumâ€NHC Catalyst for H/D Exchange. Angewandte Chemie - International Edition, 2008, 47, 8654-8656.	13.8	75
10	CuO nanoparticles supported by ceria for NO x -assisted soot oxidation: insight into catalytic activity and sintering. Applied Catalysis B: Environmental, 2017, 216, 41-58.	20.2	72
11	Tailored Ruâ€NHC Heterogeneous Catalysts for Alkene Metathesis. Chemistry - A European Journal, 2009, 15, 11820-11823.	3.3	70
12	Ceria-supported small Pt and Pt 3 Sn nanoparticles for NO x -assisted soot oxidation. Applied Catalysis B: Environmental, 2017, 209, 295-310.	20.2	67
13	Nanostructured equimolar ceria-praseodymia for NOx-assisted soot oxidation: Insight into Pr dominance over Pt nanoparticles and metal–support interaction. Applied Catalysis B: Environmental, 2018, 226, 147-161.	20.2	66
14	A Wellâ€Defined Pd Hybrid Material for the <i>Z</i> à€Selective Semihydrogenation of Alkynes Characterized at the Molecular Level by DNP SENS. Chemistry - A European Journal, 2013, 19, 12234-12238.	3.3	61
15	Solid-Phase Polarization Matrixes for Dynamic Nuclear Polarization from Homogeneously Distributed Radicals in Mesostructured Hybrid Silica Materials. Journal of the American Chemical Society, 2013, 135, 15459-15466.	13.7	56
16	A novel 2-step ALD route to ultra-thin MoS ₂ films on SiO ₂ through a surface organometallic intermediate. Nanoscale, 2017, 9, 538-546.	5.6	55
17	Direct evidence by in situ IR CO monitoring of the formation and the surface segregation of a Pt–Sn alloy. Chemical Communications, 2014, 50, 8590.	4.1	51
18	Monolayer Doping of Silicon through Grafting a Tailored Molecular Phosphorus Precursor onto Oxide-Passivated Silicon Surfaces. Chemistry of Materials, 2016, 28, 3634-3640.	6.7	50

#	Article	IF	CITATIONS
19	Enhanced formation of >C1 Products in Electroreduction of CO ₂ by Adding a CO ₂ Adsorption Component to a Gasâ€Diffusion Layerâ€Type Catalytic Electrode. ChemSusChem, 2017, 10, 4442-4446.	6.8	50
20	Role of small Cu nanoparticles in the behaviour of nanocarbon-based electrodes for the electrocatalytic reduction of CO2. Journal of CO2 Utilization, 2017, 21, 534-542.	6.8	49
21	Homologation of Propane Catalyzed by Oxide-Supported Zirconium Dihydride and Dialkyl Complexes. Angewandte Chemie - International Edition, 2007, 46, 2288-2290.	13.8	45
22	From well-defined Pt(ii) surface species to the controlled growth of silica supported Pt nanoparticles. Dalton Transactions, 2013, 42, 238-248.	3.3	41
23	CO PROX over Pt–Sn/Al2O3: A combined kinetic and in situ DRIFTS study. Catalysis Today, 2015, 258, 241-246.	4.4	41
24	Platinum nanoparticles in suspension are as efficient as Karstedt's complex for alkene hydrosilylation. Chemical Communications, 2015, 51, 16194-16196.	4.1	41
25	Highly efficient aerobic oxidation of alkenes over unsupported nanogold. Chemical Communications, 2010, 46, 5361.	4.1	36
26	Iridium(I)/Nâ€Heterocyclic Carbene Hybrid Materials: Surface Stabilization of Lowâ€Valent Iridium Species for High Catalytic Hydrogenation Performance. Angewandte Chemie - International Edition, 2015, 54, 12937-12941.	13.8	33
27	Pt nanoparticles immobilized in mesostructured silica: a non-leaching catalyst for 1-octene hydrosilylation. Chemical Communications, 2017, 53, 2962-2965.	4.1	33
28	Early/Late Heterobimetallic Tantalum/Rhodium Species Assembled Through a Novel Bifunctional NHCâ€OH Ligand. Chemistry - A European Journal, 2018, 24, 4361-4370.	3.3	33
29	Metal–Metal Synergy in Well-Defined Surface Tantalum–Iridium Heterobimetallic Catalysts for H/D Exchange Reactions. Journal of the American Chemical Society, 2019, 141, 19321-19335.	13.7	33
30	Strongly Polarized Iridium ^{δâ^'} â€"Aluminum ^{δ+} Pairs: Unconventional Reactivity Patterns Including CO ₂ Cooperative Reductive Cleavage. Journal of the American Chemical Society, 2021, 143, 4844-4856.	13.7	31
31	Regularly Distributed and Fully Accessible Pt Nanoparticles in Silica Pore Channels via the Controlled Growth of a Mesostructured Matrix around Pt Colloids. Chemistry of Materials, 2009, 21, 775-777.	6.7	30
32	Preparation and characterization of zirconium containing mesoporous silicas. II. Grafting reaction of tetraneopentyl zirconium on MCM-41 and characterization of the grafted species and of the resulting materials. Microporous and Mesoporous Materials, 2003, 66, 169-179.	4.4	26
33	Developing a Highly Active Catalytic System Based on Cobalt Nanoparticles for Terminal and Internal Alkene Hydrosilylation. Journal of Organic Chemistry, 2020, 85, 11732-11740.	3.2	26
34	Functionalization of Silica Nanoparticles and Native Silicon Oxide with Tailored Boron-Molecular Precursors for Efficient and Predictive <i>p</i> Doping of Silicon. Journal of Physical Chemistry C, 2015, 119, 13750-13757.	3.1	25
35	Tailored Polarizing Hybrid Solids with Nitroxide Radicals Localized in Mesostructured Silica Walls. Helvetica Chimica Acta, 2017, 100, e1700101.	1.6	24
36	Tailored Microstructured Hyperpolarizing Matrices for Optimal Magnetic Resonance Imaging. Angewandte Chemie - International Edition, 2018, 57, 7453-7457.	13.8	24

#	Article	IF	CITATIONS
37	Unexpected, spontaneous and selective formation of colloidal Pt3Sn nanoparticles using organometallic Pt and Sn complexes. Chemical Communications, 2010, 46, 4722.	4.1	22
38	Preparation of Sn-doped 2–3nm Ni nanoparticles supported on SiO2 via surface organometallic chemistry for low temperature dry reforming catalyst: The effect of tin doping on activity, selectivity and stability. Catalysis Today, 2014, 235, 237-244.	4.4	20
39	Domination of Local Environment Over Pore Confinement Effects on the Catalytic Performances of Single-Site Cp*IrIII-NHC Heterogeneous vs. Homogeneous H/D Exchange Catalysts. European Journal of Inorganic Chemistry, 2010, 2010, 5005-5010.	2.0	19
40	Hyperpolarization of Frozen Hydrocarbon Gases by Dynamic Nuclear Polarization at 1.2 K. Journal of Physical Chemistry Letters, 2016, 7, 3235-3239.	4.6	18
41	Alkene hydrosilylation with supported and unsupported Ni nanoparticles: strong influence of the Ni environment on activity and selectivity. Catalysis Science and Technology, 2019, 9, 1555-1558.	4.1	17
42	Origin of the Improved Performance in Lanthanumâ€doped Silicaâ€supported Ni Catalysts. ChemCatChem, 2017, 9, 586-596.	3.7	15
43	H/D Exchange on Silica-Grafted Tantalum(V) Imido Amido [(â‰;SiO)2Ta(V)(NH)(NH2)] Synthesized from Either Ammonia or Dinitrogen: IR and DFT Evidence for Heterolytic Splitting of D2. Topics in Catalysis, 2009, 52, 1482-1491.	2.8	14
44	A highly ordered mesostructured material containing regularly distributed phenols: preparation and characterization at a molecular level through ultra-fast magic angle spinning proton NMR spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 4230.	2.8	13
45	Low-temperature and scalable CVD route to WS2 monolayers on SiO2/Si substrates. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2017, 35, .	2.1	13
46	Tailored Microstructured Hyperpolarizing Matrices for Optimal Magnetic Resonance Imaging. Angewandte Chemie, 2018, 130, 7575-7579.	2.0	13
47	Mn ₂ (CO) ₁₀ and UV light: a promising combination for regioselective alkene hydrosilylation at low temperature. Chemical Communications, 2022, 58, 4091-4094.	4.1	13
48	Heterolytic cleavage of ammonia N \hat{a} \in "H bond by bifunctional activation in silica-grafted single site Ta(V) imido amido surface complex. Importance of the outer sphere NH3 assistance. New Journal of Chemistry, 2011, 35, 1011.	2.8	11
49	Stepwise construction of silica-supported tantalum/iridium heteropolymetallic catalysts using surface organometallic chemistry. Journal of Catalysis, 2020, 392, 287-301.	6.2	11
50	Active and Recyclable Polyethyleneâ€Supported Iridiumâ€(N―Heterocyclic Carbene) Catalyst for Hydrogen/Deuterium Exchange Reactions. Advanced Synthesis and Catalysis, 2016, 358, 2317-2323.	4.3	10
51	Silica-supported Z-selective Ru olefin metathesis catalysts. Molecular Catalysis, 2020, 483, 110743.	2.0	9
52	Singleâ€Phase Heterogeneous Pt ₃ Sn Catalyst Synthesized by Roomâ€Temperature Selfâ€Assembly. ChemCatChem, 2012, 4, 1729-1732.	3.7	8
53	Phenylazide Hybridâ€Silica – Polarization Platform for Dynamic Nuclear Polarization at Cryogenic Temperatures. Helvetica Chimica Acta, 2017, 100, e1600122.	1.6	6
54	Supported Ru olefin metathesis catalysts <i>via</i> a thiolate tether. Dalton Transactions, 2019, 48, 2886-2890.	3.3	5

#	Article	IF	CITATIONS
55	Facile preparation of small and narrowly distributed platinum nanoparticles in the absence of H ₂ from Pt(<scp>ii</scp>) and Pt(0) molecular precursors using trihydrogeno(octyl)silane. New Journal of Chemistry, 2014, 38, 5952-5956.	2.8	4
56	Highly dispersed silica-supported iridium and iridium–aluminium catalysts for methane activation prepared <i>via</i> surface organometallic chemistry. Chemical Communications, 2022, 58, 8214-8217.	4.1	3
57	A Solid Iridium Catalyst for Diastereoselective Hydrogenation. Chemistry - A European Journal, 2017, 23, 16171-16173.	3.3	1
58	Development of Pd Supported Catalysts Using Thiolâ€Functionalized Mesoporous Silica Frameworks: Application to the Chemo†and Regioselective C â€3 Arylation of Freeâ€Indole. European Journal of Inorganic Chemistry, 2021, 2021, 814-820.	2.0	1
59	The low temperature synthesis of very small and nonâ€crystalline ironâ€based nanoparticles: application in alkene hydrosilylation European Journal of Inorganic Chemistry, 0, , .	2.0	1