Sophie Rousseaux

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/117982/publications.pdf

Version: 2024-02-01

		57758	3	36028	
107	9,938	44		97	
papers	citations	h-index		g-index	
118	118	118		11396	
all docs	docs citations	times ranked		citing authors	

#	Article	IF	CITATIONS
1	Chidamide inhibits the NOTCH1-MYC signaling axis in T-cell acute lymphoblastic leukemia. Frontiers of Medicine, 2022, 16, 442-458.	3.4	6
2	Direct visualization of pre-protamine 2 detects protamine assembly failures and predicts ICSI success. Molecular Human Reproduction, 2022, 28, .	2.8	5
3	AKR1B10, One of the Triggers of Cytokine Storm in SARS-CoV2 Severe Acute Respiratory Syndrome. International Journal of Molecular Sciences, 2022, 23, 1911.	4.1	10
4	NUT Is a Driver of p300-Mediated Histone Hyperacetylation: From Spermatogenesis to Cancer. Cancers, 2022, 14, 2234.	3.7	8
5	Ectopic expression of a combination of 5 genes detects high risk forms of T-cell acute lymphoblastic leukemia. BMC Genomics, 2022, 23, .	2.8	2
6	Chronic Intermittent Hypoxia Increases Cell Proliferation in Hepatocellular Carcinoma. Cells, 2022, 11, 2051.	4.1	7
7	The combined detection of Amphiregulin, Cyclin A1 and DDX20/Gemin3 expression predicts aggressive forms of oral squamous cell carcinoma. British Journal of Cancer, 2021, 125, 1122-1134.	6.4	12
8	Metabolically controlled histone H4K5 acylation/acetylation ratio drives BRD4 genomic distribution. Cell Reports, 2021, 36, 109460.	6.4	27
9	Thoracic NUT carcinoma: Common pathological features despite diversity of clinical presentations. Lung Cancer, 2021, 158, 55-59.	2.0	5
10	ATAD2 controls chromatin-bound HIRA turnover. Life Science Alliance, 2021, 4, e202101151.	2.8	9
11	Pregnancy exposure to synthetic phenols and placental DNA methylation â€" An epigenome-wide association study in male infants from the EDEN cohort. Environmental Pollution, 2021, 290, 118024.	7.5	24
12	DEN-Induced Rat Model Reproduces Key Features of Human Hepatocellular Carcinoma. Cancers, 2021, 13, 4981.	3.7	30
13	Immediate and durable effects of maternal tobacco consumption alter placental DNA methylation in enhancer and imprinted gene-containing regions. BMC Medicine, 2020, 18, 306.	5.5	24
14	PenDA, a rank-based method for personalized differential analysis: Application to lung cancer. PLoS Computational Biology, 2020, 16, e1007869.	3.2	10
15	RNA-Guided Genomic Localization of H2A.L.2 Histone Variant. Cells, 2020, 9, 474.	4.1	12
16	Extracellular vesicles from myelodysplastic mesenchymal stromal cells induce DNA damage and mutagenesis of hematopoietic stem cells through miRNA transfer. Leukemia, 2020, 34, 2249-2253.	7.2	11
17	PenDA, a rank-based method for personalized differential analysis: Application to lung cancer. , 2020, 16, e1007869.		О
18	PenDA, a rank-based method for personalized differential analysis: Application to lung cancer. , 2020, 16, e1007869.		0

#	Article	IF	CITATIONS
19	PenDA, a rank-based method for personalized differential analysis: Application to lung cancer. , 2020, 16, e1007869.		0
20	PenDA, a rank-based method for personalized differential analysis: Application to lung cancer. , 2020, 16, e1007869.		0
21	Histone variants: critical determinants in tumour heterogeneity. Frontiers of Medicine, 2019, 13, 289-297.	3.4	16
22	The arginine methyltransferase CARM1 represses p300•ACT•CREMÏ,, activity and is required for spermiogenesis. Nucleic Acids Research, 2018, 46, 4327-4343.	14.5	29
23	Combination of arsenic trioxide and Dasatinib: a new strategy to treat Philadelphia chromosomeâ€positive acute lymphoblastic leukaemia. Journal of Cellular and Molecular Medicine, 2018, 22, 1614-1626.	3.6	7
24	Induction of autophagy and autophagyâ€dependent apoptosis in diffuse large Bâ€cell lymphoma by a new antimalarial artemisinin derivative, <scp>SM</scp> 1044. Cancer Medicine, 2018, 7, 380-396.	2.8	41
25	Histone variants: essential actors in male genome programming. Journal of Biochemistry, 2018, 163, 97-103.	1.7	34
26	Nut Directs p300-Dependent, Genome-Wide H4 Hyperacetylation in Male Germ Cells. Cell Reports, 2018, 24, 3477-3487.e6.	6.4	69
27	Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. Environment International, 2018, 118, 334-347.	10.0	93
28	Inhibition of BET Proteins Reduces Right Ventricle Hypertrophy and Pulmonary Hypertension Resulting from Combined Hypoxia and Pulmonary Inflammation. International Journal of Molecular Sciences, 2018, 19, 2224.	4.1	10
29	Characterization of Post-Meiotic Male Germ Cell Genome Organizational States. Methods in Molecular Biology, 2018, 1832, 293-307.	0.9	0
30	Identity crisis in pulmonary arterial hypertension. Pulmonary Circulation, 2018, 8, 1-5.	1.7	5
31	Histone Variant H2A.L.2 Guides Transition Protein-Dependent Protamine Assembly in Male Germ Cells. Molecular Cell, 2017, 66, 89-101.e8.	9.7	116
32	Muscle hypertrophy in hypoxia with inflammation is controlled by bromodomain and extra-terminal domain proteins. Scientific Reports, 2017, 7, 12133.	3.3	2
33	Purification and Analysis of Male Germ Cells from Adult Mouse Testis. Methods in Molecular Biology, 2017, 1510, 159-168.	0.9	12
34	Oncogenesis by Unprogrammed Gene Activation: A Critical Evaluation of Cancer Testis Genes., 2017,,.		1
35	The Role of Bromodomain Testis-Specific Factor, BRDT, in Cancer: A Biomarker and A Possible Therapeutic Target. Cell Journal, 2017, 19, 1-8.	0.2	146
36	Haploinsufficiency for NR3C1, the gene encoding the glucocorticoid receptor, in blastic plasmacytoid dendritic cell neoplasms. Blood, 2016, 127, 3040-3053.	1.4	60

3

#	Article	IF	Citations
37	Dynamic Competing Histone H4 K5K8 Acetylation and Butyrylation Are Hallmarks of Highly Active Gene Promoters. Molecular Cell, 2016, 62, 169-180.	9.7	215
38	Atad2 is a generalist facilitator of chromatin dynamics in embryonic stem cells. Journal of Molecular Cell Biology, 2016, 8, 349-362.	3.3	76
39	Receptor-Independent Ectopic Activity of <i>Prolactin</i> Indicates HDACi-Based Therapeutic Strategies. Antioxidants and Redox Signaling, 2015, 23, 1-14.	5.4	12
40	A six gene expression signature defines aggressive subtypes and predicts outcome in childhood and adult acute lymphoblastic leukemia. Oncotarget, 2015, 6, 16527-16542.	1.8	34
41	Histone Acylation beyond Acetylation: Terra Incognita in Chromatin Biology. Cell Journal, 2015, 17, 1-6.	0.2	106
42	Two decades of reproductive biomedicine and stem cell biology in Iran: the Royan Institute. International Journal of Developmental Biology, 2014, 58, 643-647.	0.6	1
43	Lung Squamous Cell Carcinomas with Basaloid Histology Represent a Specific Molecular Entity. Clinical Cancer Research, 2014, 20, 5777-5786.	7.0	44
44	Lessons from Yeast on Emerging Roles of the ATAD2 Protein Family in Gene Regulation and Genome Organization. Molecules and Cells, 2014, 37, 851-856.	2.6	41
45	A specific <scp>CBP</scp> /p300â€dependent gene expression programme drives the metabolic remodelling in late stages of spermatogenesis. Andrology, 2014, 2, 351-359.	3.5	27
46	Sustaining cancer through addictive ectopic gene activation. Current Opinion in Oncology, 2014, 26, 73-77.	2.4	22
47	Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nature Chemical Biology, 2014, 10, 365-370.	8.0	368
48	The RNA-binding protein Mex3b regulates the spatial organization of the Rap1 pathway. Development (Cambridge), 2014, 141, 2096-2107.	2.5	14
49	Genome-Scale Acetylation-Dependent Histone Eviction during Spermatogenesis. Journal of Molecular Biology, 2014, 426, 3342-3349.	4.2	78
50	Research Highlights: Highlights from the latest articles in epigenomics. Epigenomics, 2013, 5, 121-122.	2.1	0
51	Identification of a novel <scp>BET</scp> bromodomain inhibitorâ€sensitive, gene regulatory circuit that controls Rituximab response and tumour growth in aggressive lymphoid cancers. EMBO Molecular Medicine, 2013, 5, 1180-1195.	6.9	64
52	Malignant genome reprogramming by ATAD2. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 1010-1014.	1.9	75
53	Ectopic Activation of Germline and Placental Genes Identifies Aggressive Metastasis-Prone Lung Cancers. Science Translational Medicine, 2013, 5, 186ra66.	12.4	392
54	Cancer hallmarks sustained by ectopic activations of placenta/male germline genes. Cell Cycle, 2013, 12, 2331-2332.	2.6	12

#	Article	IF	Citations
55	Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes and Development, 2013, 27, 1680-1692.	5.9	186
56	Combined proteomic and <i>in silico </i> approaches to decipher post-meiotic male genome reprogramming in mice. Systems Biology in Reproductive Medicine, 2012, 58, 191-196.	2.1	16
57	Bromodomain-dependent stage-specific male genome programming by Brdt. EMBO Journal, 2012, 31, 3809-3820.	7.8	216
58	Proteomic strategy for the identification of critical actors in reorganization of the post-meiotic male genome. Molecular Human Reproduction, 2012, 18, 1-13.	2.8	21
59	Histone crotonylation specifically marks the haploid male germ cell gene expression program. BioEssays, 2012, 34, 187-193.	2.5	99
60	Identification of 67 Histone Marks and Histone Lysine Crotonylation as a New Type of Histone Modification. Cell, 2011, 146, 1016-1028.	28.9	1,462
61	Induced malignant genome reprogramming in somatic cells by testis-specific factors. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 221-225.	1.9	21
62	Molecular models for post-meiotic male genome reprogramming. Systems Biology in Reproductive Medicine, 2011, 57, 50-53.	2.1	25
63	1q12 chromosome translocations form aberrant heterochromatic foci associated with changes in nuclear architecture and gene expression in B cell lymphoma. EMBO Molecular Medicine, 2010, 2, 159-171.	6.9	33
64	From meiosis to postmeiotic events: The secrets of histone disappearance. FEBS Journal, 2010, 277, 599-604.	4.7	160
65	Functional characterization of ATAD2 as a new cancer/testis factor and a predictor of poor prognosis in breast and lung cancers. Oncogene, 2010, 29, 5171-5181.	5.9	140
66	Oncogenesis by sequestration of CBP/p300 in transcriptionally inactive hyperacetylated chromatin domains. EMBO Journal, 2010, 29, 2943-2952.	7.8	157
67	Systematic screen reveals new functional dynamics of histones H3 and H4 during gametogenesis. Genes and Development, 2010, 24, 1772-1786.	5.9	94
68	New hypotheses for large-scale epigenome alterations in somatic cancer cells: a role for male germ-cell-specific regulators. Epigenomics, 2009, 1, 153-161.	2.1	18
69	A transcriptomic analysis of human centromeric and pericentric sequences in normal and tumor cells. Nucleic Acids Research, 2009, 37, 6340-6354.	14.5	99
70	Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature, 2009, 461, 664-668.	27.8	395
71	Epigenetics of Spermiogenesis. , 2009, , 105-117.		1
72	A new insight into male genome reprogramming by histone variants and histone code. Cell Cycle, 2008, 7, 3499-3502.	2.6	40

#	Article	IF	CITATIONS
73	Mice Lacking Histone Deacetylase 6 Have Hyperacetylated Tubulin but Are Viable and Develop Normally. Molecular and Cellular Biology, 2008, 28, 1688-1701.	2.3	489
74	Testis-Specific Histone Variants H2AL1/2 Rapidly Disappear from Paternal Heterochromatin after Fertilization. Journal of Reproduction and Development, 2008, 54, 413-417.	1.4	45
75	Fine mapping of re-arranged Y chromosome in three infertile patients with non-obstructive azoospermia/cryptozoospermia. Human Reproduction, 2007, 22, 1854-1860.	0.9	10
76	Pericentric heterochromatin reprogramming by new histone variants during mouse spermiogenesis. Journal of Cell Biology, 2007, 176, 283-294.	5 . 2	261
77	Homozygous mutation of AURKC yields large-headed polyploid spermatozoa and causes male infertility. Nature Genetics, 2007, 39, 661-665.	21.4	248
78	Differential histone modifications mark mouse imprinting control regions during spermatogenesis. EMBO Journal, 2007, 26, 720-729.	7.8	198
79	Predictive factors for an increased risk of sperm aneuploidies in oligo-astheno-teratozoospermic males. Journal of Developmental and Physical Disabilities, 2007, 30, 153-162.	3 . 6	35
80	Post-meiotic Shifts in HSPA2/HSP70.2 Chaperone Activity during Mouse Spermatogenesis. Journal of Biological Chemistry, 2006, 281, 37888-37892.	3.4	106
81	Testis-specific histone H3 expression in somatic cells. Trends in Biochemical Sciences, 2005, 30, 357-359.	7.5	32
82	How to Pack the Genome for a Safe Trip. , 2005, 38, 65-89.		46
82	How to Pack the Genome for a Safe Trip. , 2005, 38, 65-89. Establishment of male-specific epigenetic information. Gene, 2005, 345, 139-153.	2.2	150
		7.0	
83	Establishment of male-specific epigenetic information. Gene, 2005, 345, 139-153. No Long-Term Increase in Sperm Aneuploidy Rates after Anticancer Therapy. Clinical Cancer Research,		150
83	Establishment of male-specific epigenetic information. Gene, 2005, 345, 139-153. No Long-Term Increase in Sperm Aneuploidy Rates after Anticancer Therapy. Clinical Cancer Research, 2004, 10, 6535-6543. The role of histones in chromatin remodelling during mammalian spermiogenesis. FEBS Journal, 2004,	7.0	150 35
83 84 85	Establishment of male-specific epigenetic information. Gene, 2005, 345, 139-153. No Long-Term Increase in Sperm Aneuploidy Rates after Anticancer Therapy. Clinical Cancer Research, 2004, 10, 6535-6543. The role of histones in chromatin remodelling during mammalian spermiogenesis. FEBS Journal, 2004, 271, 3459-3469.	7.0	150 35 217
83 84 85 86	Establishment of male-specific epigenetic information. Gene, 2005, 345, 139-153. No Long-Term Increase in Sperm Aneuploidy Rates after Anticancer Therapy. Clinical Cancer Research, 2004, 10, 6535-6543. The role of histones in chromatin remodelling during mammalian spermiogenesis. FEBS Journal, 2004, 271, 3459-3469. Cdyl: a new transcriptional coâ€repressor. EMBO Reports, 2003, 4, 877-882. Acetylation-Dependent Chromatin Reorganization by BRDT, a Testis-Specific Bromodomain-Containing	7.0 0.2 4.5	150 35 217 105
83 84 85 86	Establishment of male-specific epigenetic information. Gene, 2005, 345, 139-153. No Long-Term Increase in Sperm Aneuploidy Rates after Anticancer Therapy. Clinical Cancer Research, 2004, 10, 6535-6543. The role of histones in chromatin remodelling during mammalian spermiogenesis. FEBS Journal, 2004, 271, 3459-3469. Cdyl: a new transcriptional coâ€repressor. EMBO Reports, 2003, 4, 877-882. Acetylation-Dependent Chromatin Reorganization by BRDT, a Testis-Specific Bromodomain-Containing Protein. Molecular and Cellular Biology, 2003, 23, 5354-5365. Misregulation of histone acetylation in Sertoli cell-only syndrome and testicular cancer. Molecular	7.0 0.2 4.5	150 35 217 105 271

#	Article	IF	CITATIONS
91	Risk of trisomy 21 in offspring of patients with Klinefelter's syndrome. Lancet, The, 2001, 357, 2104-2105.	13.7	55
92	Identification of Components of the Murine Histone Deacetylase 6 Complex: Link between Acetylation and Ubiquitination Signaling Pathways. Molecular and Cellular Biology, 2001, 21, 8035-8044.	2.3	306
93	Genome organization in the human sperm nucleus studied by FISH and confocal microscopy. Molecular Reproduction and Development, 2000, 55, 307-315.	2.0	83
94	Active maintenance of mHDA2/mHDAC6 histone-deacetylase in the cytoplasm. Current Biology, 2000, 10, 747-749.	3.9	201
95	Regulated hyperacetylation of core histones during mouse spermatogenesis: involvement of histone-deacetylases. European Journal of Cell Biology, 2000, 79, 950-960.	3.6	256
96	Segregation of sex chromosomes in a klinefelter patient (47,xxy). Fertility and Sterility, 2000, 73, S6.	1.0	1
97	Disomy rates for chromosomes 14 and 21 studied by fluorescent in-situ hybridization in spermatozoa from three men over 60 years of age. Molecular Human Reproduction, 1998, 4, 695-699.	2.8	44
98	Increased aneuploid frequency in spermatozoa from a Hodgkin's disease patient after chemotherapy and radiotherapy. Cytogenetic and Genome Research, 1997, 76, 134-138.	1.1	35
99	A 1.7-Megabase Sequence-Ready Cosmid Contig Covering the TSC1 Candidate Region in 9q34. Genomics, 1997, 41, 385-389.	2.9	20
100	Dynamic Molecular Combing: Stretching the Whole Human Genome for High-Resolution Studies. Science, 1997, 277, 1518-1523.	12.6	579
101	Meiotic behaviour of sex chromosomes investigated by three-colour FISH on 35 142 sperm nuclei from two 47,XYY males. Human Genetics, 1997, 99, 407-412.	3.8	66
102	Increased incidence of hyperhaploid 24,XY spermatozoa detected by three-colour FISH in a 46,XY/47,XXY male. Human Genetics, 1996, 97, 171-175.	3.8	86
103	Identification of Exons in a Region of Human Chromosome 6q Known to Contain Tumour Suppressor Genes. DNA Sequence, 1996, 7, 13-19.	0.7	0
104	Meiotic segregation in males heterozygote for reciprocal translocations: analysis of sperm nuclei by two and three colour fluorescence in situ hybridization. Cytogenetic and Genome Research, 1995, 71, 240-246.	1.1	51
105	Human sperm chromosome analysis after microinjection into hamster oocytes. Journal of Assisted Reproduction and Genetics, 1995, 12, 384-388.	2.5	2
106	Sperm nuclei analysis of a Robertsonian $t(14q21q)$ carrier, by FISH, using three plasmids and two YAC probes. Human Genetics, 1995, 96, 655-660.	3.8	69
107	Meiotic segregation of the X and Y chromosomes and chromosome 1 analyzed by three-color FISH in human interphase spermatozoa. Cytogenetic and Genome Research, 1995, 71, 126-130.	1.1	44