Sanjay K Nigam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11797119/publications.pdf

Version: 2024-02-01

18482 28297 12,070 165 62 105 citations h-index g-index papers 169 169 169 10047 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Eya protein phosphatase activity regulates Six1–Dach–Eya transcriptional effects in mammalian organogenesis. Nature, 2003, 426, 247-254.	27.8	571
2	Metabolomics Reveals Signature of Mitochondrial Dysfunction in Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2013, 24, 1901-1912.	6.1	454
3	Proteasome Inhibition Leads to a Heat-shock Response, Induction of Endoplasmic Reticulum Chaperones, and Thermotolerance. Journal of Biological Chemistry, 1997, 272, 9086-9092.	3.4	412
4	What do drug transporters really do?. Nature Reviews Drug Discovery, 2015, 14, 29-44.	46.4	411
5	The Organic Anion Transporter (OAT) Family: A Systems Biology Perspective. Physiological Reviews, 2015, 95, 83-123.	28.8	346
6	Impaired Organic Anion Transport in Kidney and Choroid Plexus of Organic Anion Transporter 3 (Oat3) Tj ETQq0	0	Overlock 10 T
7	Molecular Cloning and Characterization of NKT, a Gene Product Related to the Organic Cation Transporter Family That Is Almost Exclusively Expressed in the Kidney. Journal of Biological Chemistry, 1997, 272, 6471-6478.	3.4	228
8	Handling of Drugs, Metabolites, and Uremic Toxins by Kidney Proximal Tubule Drug Transporters. Clinical Journal of the American Society of Nephrology: CJASN, 2015, 10, 2039-2049.	4.5	214
9	Molecular structure and assembly of the tight junction. American Journal of Physiology - Renal Physiology, 1998, 274, F1-F9.	2.7	206
10	Decreased Renal Organic Anion Secretion and Plasma Accumulation of Endogenous Organic Anions in OAT1 Knock-out Mice. Journal of Biological Chemistry, 2006, 281, 5072-5083.	3.4	204
11	Multiple organic anion transporters contribute to net renal excretion of uric acid. Physiological Genomics, 2008, 33, 180-192.	2.3	203
12	HGF-Induced Tubulogenesis and Branching of Epithelial Cells Is Modulated by Extracellular Matrix and TGF- \hat{l}^2 . Developmental Biology, 1993, 160, 293-302.	2.0	201
13	Involvement of Hepatocyte Growth Factor in Kidney Development. Developmental Biology, 1994, 163, 525-529.	2.0	198
14	Molecular Characteristics of Na+-coupled Glucose Transporters in Adult and Embryonic Rat Kidney. Journal of Biological Chemistry, 1995, 270, 29365-29371.	3.4	176
15	Tight Junction Proteins Form Large Complexes and Associate with the Cytoskeleton in an ATP Depletion Model for Reversible Junction Assembly. Journal of Biological Chemistry, 1997, 272, 16133-16139.	3.4	175
16	The SLC22 Transporter Family: A Paradigm for the Impact of Drug Transporters on Metabolic Pathways, Signaling, and Disease. Annual Review of Pharmacology and Toxicology, 2018, 58, 663-687.	9.4	170
17	Untargeted Metabolomics Identifies Enterobiome Metabolites and Putative Uremic Toxins as Substrates of Organic Anion Transporter 1 (Oat1). Journal of Proteome Research, 2011, 10, 2842-2851.	3.7	158
18	Key Role for the Organic Anion Transporters, OAT1 and OAT3, in the in vivo Handling of Uremic Toxins and Solutes. Scientific Reports, 2017, 7, 4939.	3.3	157

#	Article	IF	Citations
19	Impaired Wnt–β-catenin signaling disrupts adult renal homeostasis and leads to cystic kidney ciliopathy. Nature Medicine, 2009, 15, 1046-1054.	30.7	156
20	Branching morphogenesis and kidney disease. Development (Cambridge), 2004, 131, 1449-1462.	2.5	144
21	Genesis and reversal of the ischemic phenotype in epithelial cells. Journal of Clinical Investigation, 2000, 106, 621-626.	8.2	140
22	Multiple Molecular Chaperones Complex with Misfolded Large Oligomeric Glycoproteins in the Endoplasmic Reticulum. Journal of Biological Chemistry, 1997, 272, 3057-3063.	3.4	137
23	Adult Kidney Tubular Cell Population Showing Phenotypic Plasticity, Tubulogenic Capacity, and Integration Capability into Developing Kidney. Journal of the American Society of Nephrology: JASN, 2006, 17, 188-198.	6.1	134
24	Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis. Mechanisms of Development, 2001, 109, 123-135.	1.7	132
25	Folding of Secretory and Membrane Proteins. New England Journal of Medicine, 1998, 339, 1688-1695.	27.0	130
26	Involvement of a Heterotrimeric G Protein \hat{l}_{\pm} Subunit in Tight Junction Biogenesis. Journal of Biological Chemistry, 1996, 271, 25750-25753.	3.4	129
27	The organic anion transporter family: from physiology to ontogeny and the clinic. American Journal of Physiology - Renal Physiology, 2001, 281, F197-F205.	2.7	122
28	TGF- \hat{l}^2 superfamily members modulate growth, branching, shaping, and patterning of the ureteric bud. Developmental Biology, 2004, 266, 285-298.	2.0	121
29	Toward a Systems Level Understanding of Organic Anion and Other Multispecific Drug Transporters: A Remote Sensing and Signaling Hypothesis. Molecular Pharmacology, 2009, 76, 481-490.	2.3	120
30	Overlapping in vitro and in vivo specificities of the organic anion transporters OAT1 and OAT3 for loop and thiazide diuretics. American Journal of Physiology - Renal Physiology, 2008, 294, F867-F873.	2.7	115
31	Critical role for intracellular calcium in tight junction biogenesis. Journal of Cellular Physiology, 1994, 159, 423-433.	4.1	114
32	Role of tyrosine phosphorylation in the reassembly of occludin and other tight junction proteins. American Journal of Physiology - Renal Physiology, 1999, 276, F737-F750.	2.7	111
33	Reassembly of the Tight Junction after Oxidative Stress Depends on Tyrosine Kinase Activity. Journal of Biological Chemistry, 2001, 276, 22048-22055.	3.4	111
34	Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney. Developmental Biology, 2004, 275, 44-67.	2.0	105
35	Organic anion and cation transporters occur in pairs of similar and similarly expressed genes. Biochemical and Biophysical Research Communications, 2003, 300, 333-342.	2.1	101
36	A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. American Journal of Physiology - Renal Physiology, 2012, 302, F1293-F1299.	2.7	101

#	Article	IF	Citations
37	Hepatocyte Nuclear Factors $4\langle i\rangle\hat{i}\pm\langle i\rangle$ and $1\langle i\rangle\hat{i}\pm\langle i\rangle$ Regulate Kidney Developmental Expression of Drug-Metabolizing Enzymes and Drug Transporters. Molecular Pharmacology, 2013, 84, 808-823.	2.3	101
38	Developmentally regulated expression of organic ion transporters NKT (OAT1), OCT1, NLT (OAT2), and Roct. American Journal of Physiology - Renal Physiology, 2000, 278, F635-F643.	2.7	100
39	Remote Communication through Solute Carriers and ATP Binding Cassette Drug Transporter Pathways: An Update on the Remote Sensing and Signaling Hypothesis. Molecular Pharmacology, 2011, 79, 795-805.	2.3	100
40	Dependence of Epithelial Intercellular Junction Biogenesis on Thapsigargin-sensitive Intracellular Calcium Stores. Journal of Biological Chemistry, 1996, 271, 13636-13641.	3.4	99
41	Identification of a novel murine organic anion transporter family member, OAT6, expressed in olfactory mucosa. Biochemical and Biophysical Research Communications, 2004, 323, 429-436.	2.1	98
42	Uraemic syndrome of chronic kidney disease: altered remote sensing and signalling. Nature Reviews Nephrology, 2019, 15, 301-316.	9.6	94
43	Identification of pleiotrophin as a mesenchymal factor involved in ureteric bud branching morphogenesis. Development (Cambridge), 2001, 128, 3283-3293.	2.5	91
44	Modulation of HGF-Induced Tubulogenesis and Branching by Multiple Phosphorylation Mechanisms. Developmental Biology, 1993, 159, 535-548.	2.0	89
45	Multi-level Analysis of Organic Anion Transporters 1, 3, and 6 Reveals Major Differences in Structural Determinants of Antiviral Discrimination. Journal of Biological Chemistry, 2008, 283, 8654-8663.	3.4	89
46	Analyses of coding region polymorphisms in apical and basolateral human organic anion transporter (OAT) genes [OAT1 (NKT), OAT2, OAT3, OAT4, URAT (RST)] Rapid Communication. Kidney International, 2005, 68, 1491-1499.	5.2	85
47	Analysis of ABCG2 and other urate transporters in uric acid homeostasis in chronic kidney disease: potential role of remote sensing and signaling. CKJ: Clinical Kidney Journal, 2016, 9, 444-453.	2.9	84
48	The role of phosphorylation in development of tight junctions in cultured renal epithelial (MDCK) cells. Biochemical and Biophysical Research Communications, 1991, 181, 548-553.	2.1	82
49	Selective degradation of E-cadherin and dissolution of E-cadherin-catenin complexes in epithelial ischemia. American Journal of Physiology - Renal Physiology, 2000, 278, F847-F852.	2.7	82
50	Toward an etiological classification of developmental disorders of the kidney and upper urinary tract. Kidney International, 2002, 61, 10-19.	5.2	81
51	Changes in gene expression patterns in the ureteric bud and metanephric mesenchyme in models of kidney development. Kidney International, 2003, 64, 1997-2008.	5.2	81
52	Involvement of Laminin Binding Integrins and Laminin-5 in Branching Morphogenesis of the Ureteric Bud during Kidney Development. Developmental Biology, 2001, 238, 289-302.	2.0	79
53	Structural Variation Governs Substrate Specificity for Organic Anion Transporter (OAT) Homologs. Journal of Biological Chemistry, 2007, 282, 23841-23853.	3.4	79
54	The drug transporter OAT3 (SLC22A8) and endogenous metabolite communication via the gut–liver–kidney axis. Journal of Biological Chemistry, 2017, 292, 15789-15803.	3.4	79

#	Article	IF	Citations
55	The Molecular Pharmacology of Organic Anion Transporters: from DNA to FDA?. Molecular Pharmacology, 2004, 65, 479-487.	2.3	78
56	Deletion of Multispecific Organic Anion Transporter Oat1/Slc22a6 Protects against Mercury-induced Kidney Injury. Journal of Biological Chemistry, 2011, 286, 26391-26395.	3.4	78
57	Novel slc22 transporter homologs in fly, worm, and human clarify the phylogeny of organic anion and cation transporters. Physiological Genomics, 2004, 18, 12-24.	2.3	77
58	Involvement of $\widehat{Gl}\pm i2$ in the Maintenance and Biogenesis of Epithelial Cell Tight Junctions. Journal of Biological Chemistry, 1998, 273, 21629-21633.	3.4	75
59	Drug and toxicant handling by the OAT organic anion transporters in the kidney and other tissues. Nature Clinical Practice Nephrology, 2007, 3, 443-448.	2.0	73
60	Organic Anion Transporter 3 Contributes to the Regulation of Blood Pressure. Journal of the American Society of Nephrology: JASN, 2008, 19, 1732-1740.	6.1	72
61	The systems biology of uric acid transporters. Current Opinion in Nephrology and Hypertension, 2018, 27, 305-313.	2.0	71
62	Regulation of ureteric bud branching morphogenesis by sulfated proteoglycans in the developing kidney. Developmental Biology, 2004, 272, 310-327.	2.0	68
63	\hat{l}^21 -Integrin is required for kidney collecting duct morphogenesis and maintenance of renal function. American Journal of Physiology - Renal Physiology, 2009, 297, F210-F217.	2.7	67
64	Evolutionary Analysis and Classification of OATs, OCTs, OCTNs, and Other SLC22 Transporters: Structure-Function Implications and Analysis of Sequence Motifs. PLoS ONE, 2015, 10, e0140569.	2.5	63
65	Constructing Kidney-like Tissues from Cells Based on Programs for Organ Development: Toward a Method ofln VitroTissue Engineering of the Kidney. Tissue Engineering - Part A, 2010, 16, 2441-2455.	3.1	62
66	Multispecific Drug Transporter <i>Slc22a8</i> (<i>Oat3</i>) Regulates Multiple Metabolic and Signaling Pathways. Drug Metabolism and Disposition, 2013, 41, 1825-1834.	3.3	62
67	In vitro branching tubulogenesis: Implications for developmental and cystic disorders, nephron number, renal repair, and nephron engineering. Kidney International, 1998, 54, 14-26.	5.2	61
68	Novel human cDNAs homologous to Drosophila Orct and mammalian carnitine transporters. Biochemical and Biophysical Research Communications, 2002, 297, 1159-1166.	2.1	60
69	The effect of hyaluronic acid size and concentration on branching morphogenesis and tubule differentiation in developing kidney culture systems: Potential applications to engineering of renal tissues. Biomaterials, 2007, 28, 4806-4817.	11.4	60
70	Molecular Properties of Drugs Interacting with SLC22 Transporters OAT1, OAT3, OCT1, and OCT2: A Machine-Learning Approach. Journal of Pharmacology and Experimental Therapeutics, 2016, 359, 215-229.	2.5	60
71	Organic anion transport in choroid plexus from wild-type and organic anion transporter 3 (Slc22a8)-null mice. American Journal of Physiology - Renal Physiology, 2004, 286, F972-F978.	2.7	59
72	Olfactory mucosa-expressed organic anion transporter, Oat6, manifests high affinity interactions with odorant organic anions. Biochemical and Biophysical Research Communications, 2006, 351, 872-876.	2.1	59

#	Article	lF	CITATIONS
73	Functional Maturation of Drug Transporters in the Developing, Neonatal, and Postnatal Kidney. Molecular Pharmacology, 2011, 80, 147-154.	2.3	59
74	Interaction of Organic Cations with Organic Anion Transporters. Journal of Biological Chemistry, 2009, 284, 31422-31430.	3.4	58
75	Linkage of Organic Anion Transporter-1 to Metabolic Pathways through Integrated "Omics―driven Network and Functional Analysis. Journal of Biological Chemistry, 2011, 286, 31522-31531.	3.4	57
76	Cell-Cell Dissociation upon Epithelial Cell Scattering Requires a Step Mediated by the Proteasome. Journal of Biological Chemistry, 1999, 274, 24579-24584.	3.4	56
77	Developmental approaches to kidney tissue engineering. American Journal of Physiology - Renal Physiology, 2004, 286, F1-F7.	2.7	55
78	Role of Hyaluronan and CD44 in in Vitro Branching Morphogenesis of Ureteric Bud Cells. Developmental Biology, 2000, 224, 312-325.	2.0	54
79	A strategy for in vitro propagation of rat nephrons. Kidney International, 2002, 62, 1958-1965.	5.2	54
80	Glial Cell–Derived Neurotrophic Factor–Independent Ureteric Bud Outgrowth from the Wolffian Duct. Journal of the American Society of Nephrology: JASN, 2007, 18, 3147-3155.	6.1	54
81	Analysis of Three-dimensional Systems for Developing and Mature Kidneys Clarifies the Role of OAT1 and OAT3 in Antiviral Handling. Journal of Biological Chemistry, 2011, 286, 243-251.	3.4	54
82	Intracellular calcium: molecules and pools. Current Opinion in Cell Biology, 1992, 4, 220-226.	5.4	52
83	Matrix metalloproteinases and their inhibitors regulate in vitro ureteric bud branching morphogenesis. American Journal of Physiology - Renal Physiology, 2000, 279, F891-F900.	2.7	49
84	How Does the Ureteric Bud Branch?. Journal of the American Society of Nephrology: JASN, 2009, 20, 1465-1469.	6.1	49
85	Activin A is an endogenous inhibitor of ureteric bud outgrowth from the Wolffian duct. Developmental Biology, 2006, 295, 473-485.	2.0	47
86	Rho kinase acts at separate steps in ureteric bud and metanephric mesenchyme morphogenesis during kidney development. Differentiation, 2006, 74, 638-647.	1.9	47
87	A Network of SLC and ABC Transporter and DME Genes Involved in Remote Sensing and Signaling in the Gut-Liver-Kidney Axis. Scientific Reports, 2019, 9, 11879.	3.3	47
88	Stage-dependent regulation of mammary ductal branching by heparan sulfate and HGF-cMet signaling. Developmental Biology, 2011, 355, 394-403.	2.0	46
89	Gut-derived uremic toxin handling in vivo requires OAT-mediated tubular secretion in chronic kidney disease. JCI Insight, 2020, 5, .	5.0	46
90	Systems Biology Analysis Reveals Eight SLC22 Transporter Subgroups, Including OATs, OCTs, and OCTNs. International Journal of Molecular Sciences, 2020, 21, 1791.	4.1	44

#	Article	IF	CITATIONS
91	Organic anion transport pathways in antiviral handling in choroid plexus in Oat1 (Slc22a6) and Oat3 (Slc22a8) deficient tissue. Neuroscience Letters, 2013, 534, 133-138.	2.1	42
92	A role for intracellular calcium in tight junction reassembly after ATP depletion-repletion. American Journal of Physiology - Renal Physiology, 1999, 277, F524-F532.	2.7	41
93	Analyses of 5′ regulatory region polymorphisms in human SLC22A6 (OAT1) and SLC22A8 (OAT3). Journal of Human Genetics, 2006, 51, 575-580.	2.3	41
94	An Organic Anion Transporter 1 (OAT1)-centered Metabolic Network. Journal of Biological Chemistry, 2016, 291, 19474-19486.	3.4	39
95	Unique metabolite preferences of the drug transporters OAT1 and OAT3 analyzed by machine learning. Journal of Biological Chemistry, 2020, 295, 1829-1842.	3.4	39
96	Novel aspects of renal organic anion transporters. Current Opinion in Nephrology and Hypertension, 2003, 12, 551-558.	2.0	37
97	Growth factor-dependent branching of the ureteric bud is modulated by selective 6-O sulfation of heparan sulfate. Developmental Biology, 2011, 356, 19-27.	2.0	37
98	Selective amplification of protein-coding regions of large sets of genes using statistically designed primer sets. Nature Biotechnology, 1996, 14, 857-861.	17.5	36
99	Loss of the Heparan Sulfate Sulfotransferase, Ndst1, in Mammary Epithelial Cells Selectively Blocks Lobuloalveolar Development in Mice. PLoS ONE, 2010, 5, e10691.	2.5	36
100	Organic Anion and Cation SLC22 "Drug―Transporter (Oat1, Oat3, and Oct1) Regulation during Development and Maturation of the Kidney Proximal Tubule. PLoS ONE, 2012, 7, e40796.	2.5	34
101	Development and differentiation of the ureteric bud into the ureter in the absence of a kidney collecting system. Developmental Biology, 2006, 298, 571-584.	2.0	32
102	A protein kinase A and Wnt-dependent network regulating an intermediate stage in epithelial tubulogenesis during kidney development. Developmental Biology, 2012, 364, 11-21.	2.0	31
103	Implications of Gene Networks for Understanding Resilience and Vulnerability in the Kidney Branching Program. Physiology, 2004, 19, 339-347.	3.1	29
104	Hs2st mediated kidney mesenchyme induction regulates early ureteric bud branching. Developmental Biology, 2010, 339, 354-365.	2.0	29
105	The Systems Biology of Drug Metabolizing Enzymes and Transporters: Relevance to Quantitative Systems Pharmacology. Clinical Pharmacology and Therapeutics, 2020, 108, 40-53.	4.7	29
106	Analysis of Metagene Portraits Reveals Distinct Transitions During Kidney Organogenesis. Science Signaling, 2008, 1, ra16.	3.6	28
107	Biochemical processing of E-cadherin under cellular stress. Biochemical and Biophysical Research Communications, 2003, 307, 215-223.	2.1	27
108	Uremic Toxins in Organ Crosstalk. Frontiers in Medicine, 2021, 8, 592602.	2.6	27

#	Article	IF	Citations
109	The developmental nephrome: systems biology in the developing kidney. Current Opinion in Nephrology and Hypertension, 2007, 16, 3-9.	2.0	26
110	Analysis of a large cluster of SLC22 transporter genes, including novel USTs, reveals species-specific amplification of subsets of family members. Physiological Genomics, 2009, 38, 116-124.	2.3	26
111	The instructive role of metanephric mesenchyme in ureteric bud patterning, sculpting, and maturation and its potential ability to buffer ureteric bud branching defects. American Journal of Physiology - Renal Physiology, 2009, 297, F1330-F1341.	2.7	26
112	Organic anion transporter OAT3 enhances the glucosuric effect of the SGLT2 inhibitor empagliflozin. American Journal of Physiology - Renal Physiology, 2018, 315, F386-F394.	2.7	26
113	Expanding Role of G Proteins in Tight Junction Regulation: Gαs Stimulates TJ Assembly. Biochemical and Biophysical Research Communications, 2001, 285, 250-256.	2.1	25
114	Coordinate regulation of systemic and kidney tryptophan metabolism by the drug transporters OAT1 and OAT3. Journal of Biological Chemistry, 2021, 296, 100575.	3.4	25
115	Generation of an expandable intermediate mesoderm restricted progenitor cell line from human pluripotent stem cells. ELife, 2015, 4, .	6.0	25
116	Pretreatment with inducers of ER molecular chaperones protects epithelial cells subjected to ATP depletion. American Journal of Physiology - Renal Physiology, 1999, 277, F211-F218.	2.7	24
117	Evolution of gene expression patterns in a model of branching morphogenesis. American Journal of Physiology - Renal Physiology, 1999, 277, F650-F663.	2.7	24
118	Kidney versus Liver Specification of SLC and ABC Drug Transporters, Tight Junction Molecules, and Biomarkers. Drug Metabolism and Disposition, 2016, 44, 1050-1060.	3.3	23
119	Heregulin Induces Glial Cell Line-derived Neurotrophic Growth Factor-independent, Non-branching Growth and Differentiation of Ureteric Bud Epithelia. Journal of Biological Chemistry, 2005, 280, 42181-42187.	3.4	22
120	Organogenesis forum lecture. Organogenesis, 2008, 4, 137-143.	1.2	22
121	Developmental regulation of kidney and liver solute carrier and ATP-binding cassette drug transporters and drug metabolizing enzymes: the role of remote organ communication. Expert Opinion on Drug Metabolism and Toxicology, 2018, 14, 561-570.	3.3	22
122	Growth factor–heparan sulfate "switches―regulating stages of branching morphogenesis. Pediatric Nephrology, 2014, 29, 727-735.	1.7	20
123	What If Not All Metabolites from the Uremic Toxin Generating Pathways Are Toxic? A Hypothesis. Toxins, 2022, 14, 221.	3.4	20
124	Determinants of branching tubulogenesis. Current Opinion in Nephrology and Hypertension, 1995, 4, 209-214.	2.0	19
125	MAPAS: a tool for predicting membrane-contacting protein surfaces. Nature Methods, 2008, 5, 119-119.	19.0	19
126	A key role for the transporter OAT1 in systemic lipid metabolism. Journal of Biological Chemistry, 2021, 296, 100603.	3.4	19

#	Article	IF	CITATIONS
127	Blockade of Organic Anion Transport in Humans After Treatment With the Drug Probenecid Leads to Major Metabolic Alterations in Plasma and Urine. Clinical Pharmacology and Therapeutics, 2022, 112, 653-664.	4.7	19
128	Conformational Changes of the Multispecific Transporter Organic Anion Transporter 1 (OAT1/SLC22A6) Suggests a Molecular Mechanism for Initial Stages of Drug and Metabolite Transport. Cell Biochemistry and Biophysics, 2011, 61, 251-259.	1.8	18
129	Shared Ligands Between Organic Anion Transporters (OAT1 and OAT6) and Odorant Receptors. Drug Metabolism and Disposition, 2015, 43, 1855-1863.	3.3	18
130	Concise Review: Can the Intrinsic Power of Branching Morphogenesis Be Used for Engineering Epithelial Tissues and Organs?. Stem Cells Translational Medicine, 2013, 2, 993-1000.	3.3	17
131	Drosophila SLC22 Orthologs Related to OATs, OCTs, and OCTNs Regulate Development and Responsiveness to Oxidative Stress. International Journal of Molecular Sciences, 2020, 21, 2002.	4.1	17
132	Renal and non-renal response of ABC and SLC transporters in chronic kidney disease. Expert Opinion on Drug Metabolism and Toxicology, 2021, 17, 515-542.	3.3	16
133	N-Sulfation of Heparan Sulfate Regulates Early Branching Events in the Developing Mammary Gland. Journal of Biological Chemistry, 2012, 287, 42064-42070.	3.4	15
134	In Vitro Culture of Embryonic Kidney Rudiments and Isolated Ureteric Buds. Methods in Molecular Biology, 2012, 886, 13-21.	0.9	15
135	EEG1, a putative transporter expressed during epithelial organogenesis: comparison with embryonic transporter expression during nephrogenesis. American Journal of Physiology - Renal Physiology, 2001, 281, F1148-F1156.	2.7	14
136	Protein kinase A regulates GDNF/RET-dependent but not GDNF/Ret-independent ureteric bud outgrowth from the Wolffian duct. Developmental Biology, 2010, 347, 337-347.	2.0	14
137	Elucidation of common pharmacophores from analysis of targeted metabolites transported by the multispecific drug transporterâ€"Organic anion transporter1 (Oat1). Bioorganic and Medicinal Chemistry, 2011, 19, 3320-3340.	3.0	14
138	Neuropeptide Y functions as a facilitator of GDNF-induced budding of the Wolffian duct. Development (Cambridge), 2009, 136, 4213-4224.	2.5	13
139	Dynamics of Organic Anion Transporter-Mediated Tubular Secretion during Postnatal Human Kidney Development and Maturation. Clinical Journal of the American Society of Nephrology: CJASN, 2019, 14, 540-548.	4.5	13
140	Complex Dynamics of Chaperone–Protein Interactions Under Cellular Stress. Cell Biochemistry and Biophysics, 2004, 40, 263-276.	1.8	12
141	Tunicamycin preserves intercellular junctions, cytoarchitecture, and cell–substratum interactions in ATP-depleted epithelial cells. Biochemical and Biophysical Research Communications, 2004, 322, 223-231.	2.1	12
142	MODELING OF GLYCEROL-3-PHOSPHATE TRANSPORTER SUGGESTS A POTENTIAL 'TILT' MECHANISM INVOLVED IN ITS FUNCTION. Journal of Bioinformatics and Computational Biology, 2008, 06, 885-904.	0.8	12
143	Transcriptome-based reconstructions from the murine knockout suggest involvement of the urate transporter, URAT1 (slc22a12), in novel metabolic pathways. Biochemistry and Biophysics Reports, 2015, 3, 51-61.	1.3	12
144	Molecular Properties of Drugs Handled by Kidney OATs and Liver OATPs Revealed by Chemoinformatics and Machine Learning: Implications for Kidney and Liver Disease. Pharmaceutics, 2021, 13, 1720.	4.5	12

#	Article	IF	CITATIONS
145	From the ureteric bud to the penome. Kidney International, 2003, 64, 2320-2322.	5.2	11
146	The Storytelling Brain. Science and Engineering Ethics, 2012, 18, 567-571.	2.9	10
147	Debt91, a putative zinc finger protein differentially expressed during epithelial morphogenesis. Biochemical and Biophysical Research Communications, 2003, 306, 623-628.	2.1	8
148	GDNF-independent ureteric budding: role of PI3K-independent activation of AKT and FOSB/JUN/AP-1 signaling. Biology Open, 2013, 2, 952-959.	1.2	8
149	SLC22 Transporters in the Fly Renal System Regulate Response to Oxidative Stress In Vivo. International Journal of Molecular Sciences, 2021, 22, 13407.	4.1	8
150	Toward an understanding of epithelial morphogenesis in health and disease. Current Opinion in Nephrology and Hypertension, 1992, 1, 187-192.	2.0	7
151	A Biological Basis for Pharmacokinetics: The Remote Sensing and Signaling Theory. Clinical Pharmacology and Therapeutics, 2022, 112, 456-460.	4.7	7
152	Relevance of ureteric bud development and branching to tissue engineering, regeneration and repair in acute and chronic kidney disease. Current Opinion in Organ Transplantation, 2014, 19, 153-161.	1.6	5
153	Cellular and Developmental Strategies Aimed at Kidney Tissue Engineering. Nephron Experimental Nephrology, 2014, 126, 101-106.	2.2	5
154	Less degradation, more shock, please. Gastroenterology, 1999, 116, 994-996.	1.3	3
155	Geneâ€targeted deletion in mice of the <i>Ets</i> àâ²' <i>1</i> transcription factor, a candidate gene in the Jacobsen syndrome kidney "critical region,â€causes abnormal kidney development. American Journal of Medical Genetics, Part A, 2019, 179, 71-77.	1.2	3
156	Molecular and Cellular Mechanisms of Kidney Development. , 2013, , 859-890.		2
157	Regulation of Ureteric Bud Outgrowth and the Consequences of Disrupted Development. , 2016, , 209-227.		2
158	Multispecific Organic Cation Transporter 1 (OCT1) from Bos taurus Has High Affinity and Slow Binding Kinetics towards Prostaglandin E2. PLoS ONE, 2016, 11, e0152969.	2.5	2
159	Branching morphogenesis: From individual molecules to a systems biology approachCommentary on "Sema4C-Plexin B2 signalling modulates ureteric branching in developing kidney―by PerĀĀæt al Differentiation, 2011, 81, 79-80.	1.9	1
160	Abundance and competition in PCR. Nature Biotechnology, 1996, 14, 1202-1202.	17.5	0
161	Folding and bioassembly of secretory proteins in health and disease. Kidney International, 2001, 60, 397.	5.2	0
162	Organic Anion Transporters. , 0, , 51-73.		0

#	Article	IF	CITATIONS
163	Renal Regeneration. , 2014, , 253-261.		O
164	Organic Anion Transport in the Developing Kidney. , 2017, , 1040-1045.e2.		0
165	Molecular and Cellular Mechanisms of Kidney Development. , 2008, , 671-689.		O