
James Coromilas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11796272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrophysiologic Testing to Identify Patients with Coronary Artery Disease Who Are at Risk for Sudden Death. New England Journal of Medicine, 2000, 342, 1937-1945.	27.0	520
2	Disturbed Connexin43 Gap Junction Distribution Correlates With the Location of Reentrant Circuits in the Epicardial Border Zone of Healing Canine Infarcts That Cause Ventricular Tachycardia. Circulation, 1997, 95, 988-996.	1.6	466
3	Protection from Cardiac Arrhythmia Through Ryanodine Receptor-Stabilizing Protein Calstabin2. Science, 2004, 304, 292-296.	12.6	431
4	Stabilization of cardiac ryanodine receptor prevents intracellular calcium leak and arrhythmias. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 7906-7910.	7.1	209
5	Left Ventricular Function and Rapid Release of Creatine Kinase MB in Acute Myocardial Infarction. New England Journal of Medicine, 1983, 309, 1-6.	27.0	186
6	Model of reentrant ventricular tachycardia based on infarct border zone geometry predicts reentrant circuit features as determined by activation mapping. Heart Rhythm, 2007, 4, 1034-1045.	0.7	73
7	Electrophysiological Effects of Flecainide on Anisotropic Conduction and Reentry in Infarcted Canine Hearts. Circulation, 1995, 91, 2245-2263.	1.6	71
8	Effect of β-Blocking Therapy on Outcome in the Multicenter UnSustained Tachycardia Trial (MUSTT). Circulation, 2002, 106, 2694-2699.	1.6	64
9	Prediction of Sustained Ventricular Tachycardia Inducible by Programmed Stimulation in Patients With Coronary Artery Disease. Circulation, 1999, 99, 1843-1850.	1.6	62
10	Characteristics of the Temporal and Spatial Excitable Gap in Anisotropic Reentrant Circuits Causing Sustained Ventricular Tachycardia. Circulation Research, 1998, 82, 279-293.	4.5	60
11	Anisotropic Reentry in the Epicardial Border Zone of Myocardial Infarcts. Annals of the New York Academy of Sciences, 1990, 591, 86-108.	3.8	53
12	Mechanisms Causing Sustained Ventricular Tachycardia With Multiple QRS Morphologies. Circulation, 1997, 96, 3721-3731.	1.6	51
13	Source-Sink Mismatch Causing FunctionalÂConduction Block in Re-Entrant VentricularÂTachycardia. JACC: Clinical Electrophysiology, 2018, 4, 1-16.	3.2	43
14	Drug-Device Interactions: Clinical Considerations. PACE - Pacing and Clinical Electrophysiology, 1985, 8, 369-373.	1.2	42
15	Structure and function of the ventricular tachycardia isthmus. Heart Rhythm, 2022, 19, 137-153.	0.7	31
16	Characterization of Gap Junction Remodeling in Epicardial Border Zone of Healing Canine Infarcts and Electrophysiological Effects of Partial Reversal by Rotigaptide. Circulation: Arrhythmia and Electrophysiology, 2011, 4, 344-351.	4.8	30
17	Static Relationship of Cycle Length to Reentrant Circuit Geometry. Circulation, 2001, 104, 1946-1951.	1.6	27
18	A physiologically based model of creatine kinase-MB release in reperfusion of acute myocardial infarction. American Journal of Cardiology, 1989, 64, 11-15.	1.6	26

JAMES COROMILAS

#	Article	IF	CITATIONS
19	Model of Bipolar Electrogram Fractionation and Conduction Block Associated With Activation Wavefront Direction at Infarct Border Zone Lateral Isthmus Boundaries. Circulation: Arrhythmia and Electrophysiology, 2014, 7, 152-163.	4.8	25
20	Formation of Functional Conduction Block During the Onset of Reentrant Ventricular Tachycardia. Circulation: Arrhythmia and Electrophysiology, 2016, 9, .	4.8	23
21	Sinus Rhythm Electrogram Shape Measurements are Predictive of the Origins and Characteristics of Multiple Reentrant Ventricular Tachycardia Morphologies. Journal of Cardiovascular Electrophysiology, 2004, 15, 1293-1301.	1.7	21
22	Effects of Overdrive Stimulation on Functional Reentrant Circuits Causing Ventricular Tachycardia in the Canine Heart Journal of Cardiovascular Electrophysiology, 1993, 4, 393-411.	1.7	20
23	Effects of Pinacidil on Electrophysiological Properties of Epicardial Border Zone of Healing Canine Infarcts. Circulation, 2002, 105, 2309-2317.	1.6	20
24	Model of unidirectional block formation leading to reentrant ventricular tachycardia in the infarct border zone of postinfarction canine hearts. Computers in Biology and Medicine, 2015, 62, 254-263.	7.0	19
25	Dynamic Changes in Electrogram Morphology at Functional Lines of Block in Reentrant Circuits During Ventricular Tachycardia in the Infarcted Canine Heart Journal of Cardiovascular Electrophysiology, 1999, 10, 194-213.	1.7	17
26	Electrophysiological consequences of humanI Ks channel expression in adult murine heart. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H168-H175.	3.2	14
27	Mechanisms for Spontaneous Changes in QRS Morphology Sometimes Resembling Torsades de Pointes During Reentrant Ventricular Tachycardia in a Canine Infarct Model. Journal of Cardiovascular Electrophysiology, 2001, 12, 686-694.	1.7	13
28	Beta Receptor Blockade Potentiates the Antiarrhythmic Actions of d-Sotalol on Reentrant Ventricular Tachycardia in a Canine Model of Myocardial Infarction. Journal of Cardiovascular Electrophysiology, 2003, 14, 1233-1244.	1.7	13
29	Formation of reentrant circuits in the mid-myocardial infarct border zone. Computers in Biology and Medicine, 2016, 71, 205-213.	7.0	11
30	Onset dynamics of ventricular tachyarrhythmias as measured by dominant frequency. Heart Rhythm, 2011, 8, 615-623.	0.7	10
31	Time Dependent Changes in Duration of Ventricular Repolarization After AV Node Ablation: Insights into the Possible Mechanism of Postprocedural Sudden Death. PACE - Pacing and Clinical Electrophysiology, 2000, 23, 1539-1544.	1.2	9
32	Mechanisms of Resetting Reentrant Circuits in Canine Ventricular Tachycardia. Circulation, 2001, 103, 1148-1156.	1.6	8
33	Slow uniform electrical activation during sinus rhythm is an indicator of reentrant VT isthmus location and orientation in an experimental model of myocardial infarction. Computer Methods and Programs in Biomedicine, 2020, 196, 105666.	4.7	7
34	Mechanisms for Spontaneous Termination of Monomorphic, Sustained Ventricular Tachycardia. Journal of the American College of Cardiology, 1998, 31, 460-472.	2.8	6
35	Double-Wave Reentry in Orthodromic Atrioventricular Reciprocating Tachycardia: Paradoxical Shortening of the Tachycardia Cycle Length with Development of Ipsilateral Bundle Branch Block. Journal of Cardiovascular Electrophysiology, 1998, 9, 845-854.	1.7	5
36	Reprint of 'Model of unidirectional block formation leading to reentrant ventricular tachycardia in the infarct border zone of postinfarction canine hearts'. Computers in Biology and Medicine, 2015, 65, 256-266.	7.0	1

#	Article	IF	CITATIONS
37	Atrial Tachycardia or Atrioventricular Nodal Reentry? An Unusual Case of a Long RP Tachycardia. PACE - Pacing and Clinical Electrophysiology, 2001, 24, 108-110.	1.2	0