J William O Ballard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11795371/publications.pdf

Version: 2024-02-01

		186265	144013
58	6,026 citations	28	57
papers	citations	h-index	g-index
59	59	59	7042
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Ancestral dietary change alters the development of <i>Drosophila</i> larvae through MAPK signalling. Fly, 2022, 16, 298-310.	1.7	2
2	Towards understanding the evolutionary dynamics of mtDNA. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2020, 31, 355-364.	0.7	1
3	Dietary Macronutrient Management to Treat Mitochondrial Dysfunction in Parkinson's Disease. International Journal of Molecular Sciences, 2019, 20, 1850.	4.1	15
4	Exogenous Factors May Differentially Influence the Selective Costs of mtDNA Mutations. Advances in Anatomy, Embryology and Cell Biology, 2019, 231, 51-74.	1.6	4
5	The Relationship Between Dietary Macronutrients and Hepatic Telomere Length in Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 446-449.	3.6	25
6	Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genetics, 2018, 14, e1007735.	3. 5	46
7	Mitotype Interacts With Diet to Influence Longevity, Fitness, and Mitochondrial Functions in Adult Female Drosophila. Frontiers in Genetics, 2018, 9, 593.	2.3	7
8	Dietary management and physical exercise can improve climbing defects and mitochondrial activity in <i>Drosophila melanogaster parkin</i> null mutants. Fly, 2018, 12, 95-104.	1.7	13
9	Drosophila mitotypes determine developmental time in a diet and temperature dependent manner. Journal of Insect Physiology, 2017, 100, 133-139.	2.0	11
10	Sex-specific influences of mtDNA mitotype and diet on mitochondrial functions and physiological traits in Drosophila melanogaster. PLoS ONE, 2017, 12, e0187554.	2.5	31
11	Low protein to carbohydrate ratio diet delays onset of Parkinsonism like phenotype in Drosophila melanogaster parkin null mutants. Mechanisms of Ageing and Development, 2016, 160, 19-27.	4.6	13
12	The Effects of Dietary Macronutrient Balance on Skin Structure in Aging Male and Female Mice. PLoS ONE, 2016, 11, e0166175.	2.5	10
13	Review: can diet influence the selective advantage of mitochondrial DNA haplotypes?. Bioscience Reports, 2015, 35, .	2.4	26
14	The Influence of Macronutrients on Splanchnic and Hepatic Lymphocytes in Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1499-1507.	3.6	30
15	Mitochondrial <scp>DNA</scp> : more than an evolutionary bystander. Functional Ecology, 2014, 28, 218-231.	3.6	111
16	The Ratio of Macronutrients, Not Caloric Intake, Dictates Cardiometabolic Health, Aging, and Longevity in Ad Libitum-Fed Mice. Cell Metabolism, 2014, 19, 418-430.	16.2	768
17	What can symbiont titres tell us about co-evolution of Wolbachia and their host?. Journal of Invertebrate Pathology, 2014, 118, 20-27.	3.2	14
18	Assessment of temporal genetic variability of two epibenthic amphipod species in an eastern Australian estuarine environment and their suitability as biological monitors. Australian Journal of Zoology, 2014, 62, 206.	1.0	0

#	Article	IF	Citations
19	Mitochondrial haplotype divergences affect specific temperature sensitivity of mitochondrial respiration. Journal of Bioenergetics and Biomembranes, 2013, 45, 25-35.	2.3	39
20	Diet influences the intake target and mitochondrial functions of Drosophila melanogaster males. Mitochondrion, 2013, 13, 817-822.	3.4	42
21	The impact of historic isolation on the population biogeography ofÂMelita plumulosa (Crustacea:) Tj ETQq1 1 0	.784314 rş 2.1	gBT ₃ /Overlock
22	Wolbachia gonadal density in female and male Drosophila vary with laboratory adaptation and respond differently to physiological and environmental challenges. Journal of Invertebrate Pathology, 2012, 111, 197-204.	3.2	32
23	Review: Quantifying Mitochondrial Dysfunction in Complex Diseases of Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67, 1022-1035.	3.6	111
24	NATURALLY OCCURRING MITOCHONDRIAL DNA HAPLOTYPES EXHIBIT METABOLIC DIFFERENCES: INSIGHT INTO FUNCTIONAL PROPERTIES OF MITOCHONDRIA. Evolution; International Journal of Organic Evolution, 2012, 66, 3189-3197.	2.3	79
25	Protein–protein interactions of the cytochrome <i>c</i> oxidase DNA barcoding region. Systematic Entomology, 2012, 37, 229-236.	3.9	6
26	EARLY LIFE BENEFITS AND LATER LIFE COSTS OF A TWO AMINO ACID DELETION IN <i>DROSOPHILA SIMULANS</i> . Evolution; International Journal of Organic Evolution, 2011, 65, 1400-1412.	2.3	8
27	Temporal and geographical genetic variation in the amphipod Melita plumulosa (Crustacea: Melitidae): Link of a localized change in haplotype frequencies to a chemical spill. Chemosphere, 2011, 82, 1050-1055.	8.2	5
28	Functional conservatism among <i>Drosophila simulans</i> flies experiencing different thermal regimes and mitochondrial DNA introgression. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 188-198.	1.3	5
29	Thermal sensitivity of mitochondrial functions in permeabilized muscle fibers from two populations of Drosophila simulans with divergent mitotypes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R48-R59.	1.8	59
30	Thermal sensitivity of mitochondrial metabolism in two distinct mitotypes of <i>Drosophila simulans </i> : evaluation of mitochondrial plasticity. Journal of Experimental Biology, 2010, 213, 1665-1675.	1.7	71
31	Cost of a Naturally Occurring Two–Amino Acid Deletion in Cytochrome c Oxidase Subunit 7A in Drosophila simulans. American Naturalist, 2010, 176, E98-E108.	2.1	11
32	A Candidate Complex Approach to Study Functional Mitochondrial DNA Changes: Sequence Variation and Quaternary Structure Modeling of Drosophila simulans Cytochrome c Oxidase. Journal of Molecular Evolution, 2008, 66, 232-242.	1.8	20
33	Genetic and life-history trait variation of the amphipod Melita plumulosa from polluted and unpolluted waterways in eastern Australia. Science of the Total Environment, 2008, 403, 222-229.	8.0	15
34	Validation of manometric microrespirometers for measuring oxygen consumption in small arthropods. Journal of Insect Physiology, 2008, 54, 1132-1137.	2.0	11
35	Lifespan and reproduction in <i>Drosophila</i> : New insights from nutritional geometry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2498-2503.	7.1	887
36	Sympatric Drosophila simulans flies with distinct mtDNA show difference in mitochondrial respiration and electron transport. Insect Biochemistry and Molecular Biology, 2007, 37, 213-222.	2.7	36

#	Article	IF	Citations
37	Sympatric Drosophila simulans flies with distinct mtDNA show age related differences in mitochondrial metabolism. Insect Biochemistry and Molecular Biology, 2007, 37, 923-932.	2.7	10
38	Sex differences in survival and mitochondrial bioenergetics during aging in <i>Drosophila</i> . Aging Cell, 2007, 6, 699-708.	6.7	45
39	MITOCHONDRIAL DNA VARIATION IS ASSOCIATED WITH MEASURABLE DIFFERENCES IN LIFE-HISTORY TRAITS AND MITOCHONDRIAL METABOLISM IN DROSOPHILA SIMULANS. Evolution; International Journal of Organic Evolution, 2007, 61, 1735-1747.	2.3	94
40	Working harder to stay alive: Metabolic rate increases with age in Drosophila simulans but does not correlate with life span. Journal of Insect Physiology, 2007, 53, 1300-1306.	2.0	27
41	Comparative Analysis of Mitochondrial Genotype and Aging. Annals of the New York Academy of Sciences, 2007, 1114, 93-106.	3.8	13
42	Intraspecific variation in survival and mitochondrial oxidative phosphorylation in wild-caught Drosophila simulans. Aging Cell, 2006, 5, 225-233.	6.7	44
43	High divergence among Drosophila simulans mitochondrial haplogroups arose in midst of long term purifying selection. Molecular Phylogenetics and Evolution, 2005, 36, 328-337.	2.7	17
44	as a novel model for studying mitochondrial metabolism and aging. Experimental Gerontology, 2005, 40, 763-773.	2.8	28
45	The Population Biology of Mitochondrial DNA and Its Phylogenetic Implications. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 621-642.	8.3	292
46	Differential fitness of mitochondrial DNA in perturbation cage studies correlates with global abundance and population history in Drosophila simulans. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1197-1201.	2.6	36
47	The incomplete natural history of mitochondria. Molecular Ecology, 2004, 13, 729-744.	3.9	1,767
48	Linking phylogenetics with population genetics to reconstruct the geographic origin of a species. Molecular Phylogenetics and Evolution, 2004, 32, 998-1009.	2.7	64
49	Mitochondrial Genotype Affects Fitness in <i>Drosophila simulans</i> . Genetics, 2003, 164, 187-194.	2.9	115
50	Influence of Two Wolbachia Strains on Population Structure of East African <i>Drosophila simulans</i> . Genetics, 2003, 165, 1959-1969.	2.9	64
51	DIVERGENCE OF MITOCHONDRIAL DNA IS NOT CORROBORATED BY NUCLEAR DNA, MORPHOLOGY, OR BEHAVIOR IN DROSOPHILA SIMULANS. Evolution; International Journal of Organic Evolution, 2002, 56, 527-545.	2.3	119
52	Factors affecting mitochondrial DNA quality from museum preserved Drosophila simulans. Entomologia Experimentalis Et Applicata, 2001, 98, 279-283.	1.4	71
53	When One Is Not Enough: Introgression of Mitochondrial DNA in Drosophila. Molecular Biology and Evolution, 2000, 17, 1126-1130.	8.9	121
54	EXPRESSION OF CYTOPLASMIC INCOMPATIBILITY IN DROSOPHILA SIMULANS AND ITS IMPACT ON INFECTION FREQUENCIES AND DISTRIBUTION OF WOLBACHIA PIPIENTIS. Evolution; International Journal of Organic Evolution, 2000, 54, 1661-1672.	2.3	111

#	Article	IF	CITATION
55	Comparative Genomics of Mitochondrial DNA in Members of the Drosophila melanogaster Subgroup. Journal of Molecular Evolution, 2000, 51, 48-63.	1.8	185
56	Comparative Genomics of Mitochondrial DNA in Drosophila simulans. Journal of Molecular Evolution, 2000, 51, 64-75.	1.8	180
57	EXPRESSION OF CYTOPLASMIC INCOMPATIBILITY IN DROSOPHILA SIMULANS AND ITS IMPACT ON INFECTION FREQUENCIES AND DISTRIBUTION OF WOLBACHIA PIPIENTIS. Evolution; International Journal of Organic Evolution, 2000, 54, 1661.	2.3	17
58	Data Sets, Partitions, and Characters: Philosophies and Procedures for Analyzing Multiple Data Sets. Systematic Biology, 1998, 47, 367-396.	5.6	39