
J William O Ballard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11795371/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The incomplete natural history of mitochondria. Molecular Ecology, 2004, 13, 729-744.	3.9	1,767
2	Lifespan and reproduction in <i>Drosophila</i> : New insights from nutritional geometry. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 2498-2503.	7.1	887
3	The Ratio of Macronutrients, Not Caloric Intake, Dictates Cardiometabolic Health, Aging, and Longevity in Ad Libitum-Fed Mice. Cell Metabolism, 2014, 19, 418-430.	16.2	768
4	The Population Biology of Mitochondrial DNA and Its Phylogenetic Implications. Annual Review of Ecology, Evolution, and Systematics, 2005, 36, 621-642.	8.3	292
5	Comparative Genomics of Mitochondrial DNA in Members of the Drosophila melanogaster Subgroup. Journal of Molecular Evolution, 2000, 51, 48-63.	1.8	185
6	Comparative Genomics of Mitochondrial DNA in Drosophila simulans. Journal of Molecular Evolution, 2000, 51, 64-75.	1.8	180
7	When One Is Not Enough: Introgression of Mitochondrial DNA in Drosophila. Molecular Biology and Evolution, 2000, 17, 1126-1130.	8.9	121
8	DIVERGENCE OF MITOCHONDRIAL DNA IS NOT CORROBORATED BY NUCLEAR DNA, MORPHOLOGY, OR BEHAVIOR IN DROSOPHILA SIMULANS. Evolution; International Journal of Organic Evolution, 2002, 56, 527-545.	2.3	119
9	Mitochondrial Genotype Affects Fitness in <i>Drosophila simulans</i> . Genetics, 2003, 164, 187-194.	2.9	115
10	EXPRESSION OF CYTOPLASMIC INCOMPATIBILITY IN DROSOPHILA SIMULANS AND ITS IMPACT ON INFECTION FREQUENCIES AND DISTRIBUTION OF WOLBACHIA PIPIENTIS. Evolution; International Journal of Organic Evolution, 2000, 54, 1661-1672.	2.3	111
11	Review: Quantifying Mitochondrial Dysfunction in Complex Diseases of Aging. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2012, 67, 1022-1035.	3.6	111
12	Mitochondrial <scp>DNA</scp> : more than an evolutionary bystander. Functional Ecology, 2014, 28, 218-231.	3.6	111
13	MITOCHONDRIAL DNA VARIATION IS ASSOCIATED WITH MEASURABLE DIFFERENCES IN LIFE-HISTORY TRAITS AND MITOCHONDRIAL METABOLISM IN DROSOPHILA SIMULANS. Evolution; International Journal of Organic Evolution, 2007, 61, 1735-1747.	2.3	94
14	NATURALLY OCCURRING MITOCHONDRIAL DNA HAPLOTYPES EXHIBIT METABOLIC DIFFERENCES: INSIGHT INTO FUNCTIONAL PROPERTIES OF MITOCHONDRIA. Evolution; International Journal of Organic Evolution, 2012, 66, 3189-3197.	2.3	79
15	Factors affecting mitochondrial DNA quality from museum preserved Drosophila simulans. Entomologia Experimentalis Et Applicata, 2001, 98, 279-283.	1.4	71
16	Thermal sensitivity of mitochondrial metabolism in two distinct mitotypes of <i>Drosophila simulans</i> : evaluation of mitochondrial plasticity. Journal of Experimental Biology, 2010, 213, 1665-1675.	1.7	71
17	Linking phylogenetics with population genetics to reconstruct the geographic origin of a species. Molecular Phylogenetics and Evolution, 2004, 32, 998-1009.	2.7	64
18	Influence of Two Wolbachia Strains on Population Structure of East African <i>Drosophila simulans</i> . Genetics, 2003, 165, 1959-1969.	2.9	64

J WILLIAM O BALLARD

#	Article	IF	CITATIONS
19	Thermal sensitivity of mitochondrial functions in permeabilized muscle fibers from two populations of Drosophila simulans with divergent mitotypes. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2011, 301, R48-R59.	1.8	59
20	Genotype to phenotype: Diet-by-mitochondrial DNA haplotype interactions drive metabolic flexibility and organismal fitness. PLoS Genetics, 2018, 14, e1007735.	3.5	46
21	Sex differences in survival and mitochondrial bioenergetics during aging in <i>Drosophila</i> . Aging Cell, 2007, 6, 699-708.	6.7	45
22	Intraspecific variation in survival and mitochondrial oxidative phosphorylation in wild-caught Drosophila simulans. Aging Cell, 2006, 5, 225-233.	6.7	44
23	Diet influences the intake target and mitochondrial functions of Drosophila melanogaster males. Mitochondrion, 2013, 13, 817-822.	3.4	42
24	Data Sets, Partitions, and Characters: Philosophies and Procedures for Analyzing Multiple Data Sets. Systematic Biology, 1998, 47, 367-396.	5.6	39
25	Mitochondrial haplotype divergences affect specific temperature sensitivity of mitochondrial respiration. Journal of Bioenergetics and Biomembranes, 2013, 45, 25-35.	2.3	39
26	Differential fitness of mitochondrial DNA in perturbation cage studies correlates with global abundance and population history in Drosophila simulans. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 1197-1201.	2.6	36
27	Sympatric Drosophila simulans flies with distinct mtDNA show difference in mitochondrial respiration and electron transport. Insect Biochemistry and Molecular Biology, 2007, 37, 213-222.	2.7	36
28	Wolbachia gonadal density in female and male Drosophila vary with laboratory adaptation and respond differently to physiological and environmental challenges. Journal of Invertebrate Pathology, 2012, 111, 197-204.	3.2	32
29	Sex-specific influences of mtDNA mitotype and diet on mitochondrial functions and physiological traits in Drosophila melanogaster. PLoS ONE, 2017, 12, e0187554.	2.5	31
30	The Influence of Macronutrients on Splanchnic and Hepatic Lymphocytes in Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2015, 70, 1499-1507.	3.6	30
31	as a novel model for studying mitochondrial metabolism and aging. Experimental Gerontology, 2005, 40, 763-773.	2.8	28
32	Working harder to stay alive: Metabolic rate increases with age in Drosophila simulans but does not correlate with life span. Journal of Insect Physiology, 2007, 53, 1300-1306.	2.0	27
33	Review: can diet influence the selective advantage of mitochondrial DNA haplotypes?. Bioscience Reports, 2015, 35, .	2.4	26
34	The Relationship Between Dietary Macronutrients and Hepatic Telomere Length in Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2018, 73, 446-449.	3.6	25
35	A Candidate Complex Approach to Study Functional Mitochondrial DNA Changes: Sequence Variation and Quaternary Structure Modeling of Drosophila simulans Cytochrome c Oxidase. Journal of Molecular Evolution, 2008, 66, 232-242.	1.8	20
36	EXPRESSION OF CYTOPLASMIC INCOMPATIBILITY IN DROSOPHILA SIMULANS AND ITS IMPACT ON INFECTION FREQUENCIES AND DISTRIBUTION OF WOLBACHIA PIPIENTIS. Evolution; International Journal of Organic Evolution, 2000, 54, 1661.	2.3	17

J WILLIAM O BALLARD

#	Article	IF	CITATIONS
37	High divergence among Drosophila simulans mitochondrial haplogroups arose in midst of long term purifying selection. Molecular Phylogenetics and Evolution, 2005, 36, 328-337.	2.7	17
38	Genetic and life-history trait variation of the amphipod Melita plumulosa from polluted and unpolluted waterways in eastern Australia. Science of the Total Environment, 2008, 403, 222-229.	8.0	15
39	Dietary Macronutrient Management to Treat Mitochondrial Dysfunction in Parkinson's Disease. International Journal of Molecular Sciences, 2019, 20, 1850.	4.1	15
40	What can symbiont titres tell us about co-evolution of Wolbachia and their host?. Journal of Invertebrate Pathology, 2014, 118, 20-27.	3.2	14
41	Comparative Analysis of Mitochondrial Genotype and Aging. Annals of the New York Academy of Sciences, 2007, 1114, 93-106.	3.8	13
42	Low protein to carbohydrate ratio diet delays onset of Parkinsonism like phenotype in Drosophila melanogaster parkin null mutants. Mechanisms of Ageing and Development, 2016, 160, 19-27.	4.6	13
43	Dietary management and physical exercise can improve climbing defects and mitochondrial activity in <i>Drosophila melanogaster parkin</i> null mutants. Fly, 2018, 12, 95-104.	1.7	13
44	Validation of manometric microrespirometers for measuring oxygen consumption in small arthropods. Journal of Insect Physiology, 2008, 54, 1132-1137.	2.0	11
45	Cost of a Naturally Occurring Two–Amino Acid Deletion in Cytochrome c Oxidase Subunit 7A in Drosophila simulans. American Naturalist, 2010, 176, E98-E108.	2.1	11
46	Drosophila mitotypes determine developmental time in a diet and temperature dependent manner. Journal of Insect Physiology, 2017, 100, 133-139.	2.0	11
47	Sympatric Drosophila simulans flies with distinct mtDNA show age related differences in mitochondrial metabolism. Insect Biochemistry and Molecular Biology, 2007, 37, 923-932.	2.7	10
48	The Effects of Dietary Macronutrient Balance on Skin Structure in Aging Male and Female Mice. PLoS ONE, 2016, 11, e0166175.	2.5	10
49	EARLY LIFE BENEFITS AND LATER LIFE COSTS OF A TWO AMINO ACID DELETION IN <i>DROSOPHILA SIMULANS</i> . Evolution; International Journal of Organic Evolution, 2011, 65, 1400-1412.	2.3	8
50	Mitotype Interacts With Diet to Influence Longevity, Fitness, and Mitochondrial Functions in Adult Female Drosophila. Frontiers in Genetics, 2018, 9, 593.	2.3	7
51	Protein–protein interactions of the cytochrome <i>c</i> oxidase DNA barcoding region. Systematic Entomology, 2012, 37, 229-236.	3.9	6
52	Temporal and geographical genetic variation in the amphipod Melita plumulosa (Crustacea: Melitidae): Link of a localized change in haplotype frequencies to a chemical spill. Chemosphere, 2011, 82, 1050-1055.	8.2	5
53	Functional conservatism among <i>Drosophila simulans</i> flies experiencing different thermal regimes and mitochondrial DNA introgression. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 188-198.	1.3	5
54	Exogenous Factors May Differentially Influence the Selective Costs of mtDNA Mutations. Advances in Anatomy, Embryology and Cell Biology, 2019, 231, 51-74.	1.6	4

#	Article	IF	CITATIONS
55	The impact of historic isolation on the population biogeography ofÂMelita plumulosa (Crustacea:) Tj ETQq1 1 0.7	84314 rgE 2.1	BT ₃ /Overlock
56	Ancestral dietary change alters the development of <i>Drosophila</i> larvae through MAPK signalling. Fly, 2022, 16, 298-310.	1.7	2
57	Towards understanding the evolutionary dynamics of mtDNA. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2020, 31, 355-364.	0.7	1
58	Assessment of temporal genetic variability of two epibenthic amphipod species in an eastern Australian estuarine environment and their suitability as biological monitors. Australian Journal of Zoology, 2014, 62, 206.	1.0	0