Gerald G Fuller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11795229/publications.pdf

Version: 2024-02-01

162	8,287	53 h-index	83
papers	citations		g-index
162	162	162	7464
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Interfacial Assembly of Graphene Oxide: From Super Elastic Interfaces to Liquidâ€inâ€Liquid Printing. Advanced Materials Interfaces, 2022, 9, .	1.9	15
2	Influence of salt on the formation and separation of droplet interface bilayers. Physics of Fluids, 2022, 34, .	1.6	1
3	Adsorption and Aggregation of Monoclonal Antibodies at Silicone Oil–Water Interfaces. Molecular Pharmaceutics, 2021, 18, 1656-1665.	2.3	22
4	Flowering in bursting bubbles with viscoelastic interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	15
5	Mechanical and microstructural insights of Vibrio cholerae and Escherichia coli dual-species biofilm at the air-liquid interface. Colloids and Surfaces B: Biointerfaces, 2020, 188, 110786.	2.5	16
6	Understanding the adsorption and potential tear film stability properties of recombinant human lubricin and bovine submaxillary mucins in an in vitro tear film model. Colloids and Surfaces B: Biointerfaces, 2020, 195, 111257.	2.5	17
7	Asphaltene-induced spontaneous emulsification: Effects of interfacial co-adsorption and viscoelasticity. Journal of Rheology, 2020, 64, 799-816.	1.3	27
8	Viscoelastic interfaces comprising of cellulose nanocrystals and lauroyl ethyl arginate for enhanced foam stability. Soft Matter, 2020, 16, 3981-3990.	1.2	13
9	Perpendicular alignment of lymphatic endothelial cells in response to spatial gradients in wall shear stress. Communications Biology, 2020, 3, 57.	2.0	25
10	Polymeric-nanofluids stabilized emulsions: Interfacial versus bulk rheology. Journal of Colloid and Interface Science, 2020, 576, 252-263.	5.0	32
11	Mechanical Properties of Solidifying Assemblies of Nanoparticle Surfactants at the Oil–Water Interface. Langmuir, 2019, 35, 13340-13350.	1.6	25
12	The influence of protein deposition on contact lens tear film stability. Colloids and Surfaces B: Biointerfaces, 2019, 180, 229-236.	2.5	24
13	Linking aggregation and interfacial properties in monoclonal antibody-surfactant formulations. Journal of Colloid and Interface Science, 2019, 550, 128-138.	5.0	61
14	Lymphatic endothelial cell calcium pulses are sensitive to spatial gradients in wall shear stress. Molecular Biology of the Cell, 2019, 30, 923-931.	0.9	7
15	Evaporation-driven solutocapillary flow of thin liquid films over curved substrates. Physical Review Fluids, 2019, 4, .	1.0	13
16	Monoclonal Antibody Interfaces: Dilatation Mechanics and Bubble Coalescence. Langmuir, 2018, 34, 630-638.	1.6	51
17	Influence of interfacial elasticity on liquid entrainment in thin foam films. Physical Review Fluids, 2018, 3, .	1.0	18
18	Droplet Coalescence and Spontaneous Emulsification in the Presence of Asphaltene Adsorption. Langmuir, 2017, 33, 10501-10510.	1.6	66

#	Article	IF	CITATIONS
19	DACH1 stimulates shear stress-guided endothelial cell migration and coronary artery growth through the CXCL12–CXCR4 signaling axis. Genes and Development, 2017, 31, 1308-1324.	2.7	77
20	Interfacial mechanisms for stability of surfactant-laden films. PLoS ONE, 2017, 12, e0175753.	1.1	35
21	Instability and Breakup of Model Tear Films. , 2016, 57, 949.		35
22	Sphingosine 1-phosphate receptor 1 regulates the directional migration of lymphatic endothelial cells in response to fluid shear stress. Journal of the Royal Society Interface, 2016, 13, 20160823.	1.5	13
23	Interfacial dilatational deformation accelerates particle formation in monoclonal antibody solutions. Soft Matter, 2016, 12, 3293-3302.	1.2	57
24	Growth Kinetics and Mechanics of Hydrate Films by Interfacial Rheology. Langmuir, 2016, 32, 4203-4209.	1.6	21
25	Mechanical Behavior of a <i>Bacillus subtilis</i> Pellicle. Journal of Physical Chemistry B, 2016, 120, 6080-6088.	1.2	20
26	Dynamic fluid-film interferometry as a predictor of bulk foam properties. Soft Matter, 2016, 12, 9266-9279.	1.2	45
27	Nonmonotonic Elasticity of the Crude Oil–Brine Interface in Relation to Improved Oil Recovery. Langmuir, 2016, 32, 2192-2198.	1.6	134
28	Nanoscale Patterning of Extracellular Matrix Alters Endothelial Function under Shear Stress. Nano Letters, 2016, 16, 410-419.	4.5	50
29	Multiplexed Fluid Flow Device to Study Cellular Response to Tunable Shear Stress Gradients. Annals of Biomedical Engineering, 2016, 44, 2261-2272.	1.3	16
30	Spreading of miscible liquids. Physical Review Fluids, 2016, 1, .	1.0	8
31	Placing Marangoni instabilities under arrest. Physical Review Fluids, 2016, 1, .	1.0	2
32	Influence of Lipid Coatings on Surface Wettability Characteristics of Silicone Hydrogels. Langmuir, 2015, 31, 3820-3828.	1.6	15
33	Dewetting and deposition of thin films with insoluble surfactants from curved silicone hydrogel substrates. Journal of Colloid and Interface Science, 2015, 449, 428-435.	5.0	10
34	Multiphase flow of miscible liquids: jets and drops. Experiments in Fluids, 2015, 56, 1.	1.1	13
35	Lung surfactants and different contributions to thin film stability. Soft Matter, 2015, 11, 8048-8057.	1.2	88
36	Corneal Cell Adhesion to Contact Lens Hydrogel Materials Enhanced via Tear Film Protein Deposition. PLoS ONE, 2014, 9, e105512.	1.1	15

#	Article	IF	CITATIONS
37	Microvascular Endothelial Cells Migrate Upstream and Align Against the Shear Stress Field Created by Impinging Flow. Biophysical Journal, 2014, 106, 366-374.	0.2	79
38	Molecular Determinants of Mechanical Properties of V.Âcholerae Biofilms atÂthe Air-Liquid Interface. Biophysical Journal, 2014, 107, 2245-2252.	0.2	55
39	Influence of interfacial rheology on drainage from curved surfaces. Soft Matter, 2014, 10, 6917-6925.	1.2	59
40	Scaling analysis and mathematical theory of the interfacial stress rheometer. Journal of Rheology, 2014, 58, 999-1038.	1.3	23
41	Spatial patterning of endothelium modulates cell morphology, adhesiveness and transcriptional signature. Biomaterials, 2013, 34, 2928-2937.	5.7	56
42	Thermoresponsiveness of PDMAEMA. Electrostatic and Stereochemical Effects. Macromolecules, 2013, 46, 2331-2340.	2.2	63
43	The modulation of endothelial cell morphology, function, and survival using anisotropic nanofibrillar collagen scaffolds. Biomaterials, 2013, 34, 4038-4047.	5.7	82
44	Tracking the interfacial dynamics of PNiPAM soft microgels particles adsorbed at the air–water interface and in thin liquid films. Rheologica Acta, 2013, 52, 445-454.	1.1	58
45	Disruption of Escherichia coli Amyloid-Integrated Biofilm Formation at the Air–Liquid Interface by a Polysorbate Surfactant. Langmuir, 2013, 29, 920-926.	1.6	32
46	3-Hydroxybutyric Acid Interacts with Lipid Monolayers at Concentrations That Impair Consciousness. Langmuir, 2013, 29, 1948-1955.	1.6	6
47	In-Situ Quantification of the Interfacial Rheological Response of Bacterial Biofilms to Environmental Stimuli. PLoS ONE, 2013, 8, e78524.	1.1	76
48	Structural and Rheological Properties of Meibomian Lipid. , 2013, 54, 2720.		63
49	Temperature-Induced Transitions in the Structure and Interfacial Rheology of Human Meibum. Biophysical Journal, 2012, 102, 369-376.	0.2	51
50	Interfacial Rheology of Natural Silk Fibroin at Air/Water and Oil/Water Interfaces. Langmuir, 2012, 28, 459-467.	1.6	51
51	Interfacial and Fluorescence Studies on Stereoblock Poly(<i>N</i> -isopropylacryl amide)s. Langmuir, 2012, 28, 14792-14798.	1.6	9
52	Consequences of Interfacial Viscoelasticity on Thin Film Stability. Langmuir, 2012, 28, 14238-14244.	1.6	40
53	Aligned nanofibrillar collagen regulates endothelial organization and migration. Regenerative Medicine, 2012, 7, 649-661.	0.8	60
54	Quantitative Analysis of Amyloid-Integrated Biofilms Formed by Uropathogenic Escherichia coli at the Air-Liquid Interface. Biophysical Journal, 2012, 103, 464-471.	0.2	68

#	Article	lF	Citations
55	Molecular Structure of Interfacial Human Meibum Films. Langmuir, 2012, 28, 11858-11865.	1.6	42
56	Complex Fluid-Fluid Interfaces: Rheology and Structure. Annual Review of Chemical and Biomolecular Engineering, 2012, 3, 519-543.	3. 3	258
57	Oriented collagen as a potential cochlear implant electrode surface coating to achieve directed neurite outgrowth. European Archives of Oto-Rhino-Laryngology, 2012, 269, 1111-1116.	0.8	12
58	Influence of surface rheology on dynamic wetting of droplets coated with insoluble surfactants. Soft Matter, 2011, 7, 7747.	1.2	15
59	Editorial: dynamics and rheology of complex fluid–fluid interfaces. Soft Matter, 2011, 7, 7583.	1.2	15
60	Insertion Mechanism of a Poly(ethylene oxide)-poly(butylene oxide) Block Copolymer into a DPPC Monolayer. Langmuir, 2011, 27, 11444-11450.	1.6	23
61	Designing a tubular matrix of oriented collagen fibrils for tissue engineering. Acta Biomaterialia, 2011, 7, 2448-2456.	4.1	61
62	A double wall-ring geometry for interfacial shear rheometry. Rheologica Acta, 2010, 49, 131-144.	1.1	266
63	Thin Film Formation of Silica Nanoparticle/Lipid Composite Films at the Fluidâ^Fluid Interface. Langmuir, 2010, 26, 17867-17873.	1.6	18
64	Interfacial Flow Processing of Collagen. Langmuir, 2010, 26, 3514-3521.	1.6	22
65	The interfacial viscoelastic properties and structures of human and animal Meibomian lipids. Experimental Eye Research, 2010, 90, 598-604.	1.2	62
66	Liquid Crystalline Collagen: A Self-Assembled Morphology for the Orientation of Mammalian Cells. Langmuir, 2009, 25, 3200-3206.	1.6	65
67	Surface Rheology of a Polymer Monolayer: Effects of Polymer Chain Length and Compression Rate. Langmuir, 2009, 25, 7457-7464.	1.6	36
68	Langmuir Monolayers of Straight-Chain and Branched Hexadecanol and Eicosanol Mixtures. Langmuir, 2008, 24, 14005-14014.	1.6	15
69	Effect of Lysozyme Adsorption on the Interfacial Rheology of DPPC and Cholesteryl Myristate Films. Langmuir, 2008, 24, 11728-11733.	1.6	36
70	Surface Rheology of Hydrophobically Modified PEG Polymers Associating with a Phospholipid Monolayer at the Airâ 'Water Interface. Langmuir, 2008, 24, 4056-4064.	1.6	21
71	Analysis of the magnetic rod interfacial stress rheometer. Journal of Rheology, 2008, 52, 261-285.	1.3	136
72	Small Molecule, Non-Peptide p75NTR Ligands Inhibit AÎ 2 -Induced Neurodegeneration and Synaptic Impairment. PLoS ONE, 2008, 3, e3604.	1.1	112

#	Article	IF	Citations
73	Determining the mechanical response of particle-laden fluid interfaces using surface pressure isotherms and bulk pressure measurements of droplets. Physical Chemistry Chemical Physics, 2007, 9, 6344.	1.3	72
74	Why inhaling salt water changes what we exhale. Journal of Colloid and Interface Science, 2007, 307, 71-78.	5.0	31
75	Lipid-Induced β-Amyloid Peptide Assemblage Fragmentation. Biophysical Journal, 2006, 91, 4071-4080.	0.2	45
76	Effects of Temperature and Chemical Modification on Polymer Langmuir Filmsâ€. Journal of Physical Chemistry B, 2006, 110, 22285-22290.	1.2	8
77	Interfacial Rheology and Structure of Straight-Chain and Branched Hexadecanol Mixtures. Industrial & Lamp; Engineering Chemistry Research, 2006, 45, 6880-6884.	1.8	22
78	Interfacial Rheology and Structure of Straight-Chain and Branched Fatty Alcohol Mixtures. Langmuir, 2006, 22, 5321-5327.	1.6	29
79	Lung Surfactant Gelation Induced by Epithelial Cells Exposed to Air Pollution or Oxidative Stress. American Journal of Respiratory Cell and Molecular Biology, 2005, 33, 161-168.	1.4	39
80	Pickering Emulsions with Controllable Stability. Langmuir, 2005, 21, 2158-2162.	1.6	348
81	Two-Dimensional Melts:Â Polymer Chains at the Airâ^'Water Interface. Macromolecules, 2005, 38, 6672-6679.	2.2	45
82	Phase Behavior and Viscoelastic Properties of Trisilanolcyclohexyl-POSS at the Air/Water Interface. Langmuir, 2005, 21, 2375-2385.	1.6	36
83	Shear and Dilational Surface Rheology of Oppositely Charged Polyelectrolyte/Surfactant Microgels Adsorbed at the Airâ^`Water Interface. Influence on Foam Stability. Journal of Physical Chemistry B, 2004, 108, 16473-16482.	1.2	124
84	Influence of Subphase Conditions on Interfacial Viscoelastic Properties of Synthetic Lipids with Gentiobiose Head Groups. Journal of Physical Chemistry B, 2004, 108, 3211-3214.	1.2	13
85	Shear and Dilatational Relaxation Mechanisms of Globular and Flexible Proteins at the Hexadecane/Water Interface. Langmuir, 2004, 20, 10159-10167.	1.6	167
86	Connect the Drops:Â Using Solids as Adhesives for Liquids. Langmuir, 2004, 20, 4805-4808.	1.6	90
87	Coalescence of Particle-Laden Fluid Interfaces. Langmuir, 2004, 20, 90-94.	1.6	126
88	Dynamic transitions and oscillatory melting of a two-dimensional crystal subjected to shear flow. Journal of Rheology, 2004, 48, 159-173.	1.3	35
89	Interfacial Rheology of Globular and Flexible Proteins at the Hexadecane/Water Interface:Â Comparison of Shear and Dilatation Deformation. Journal of Physical Chemistry B, 2004, 108, 3835-3844.	1.2	258
90	Component Stressâ~'Strain Behavior and Small-Angle Neutron Scattering Investigation of Stereoblock Elastomeric Polypropyleneâ€. Macromolecules, 2003, 36, 1178-1187.	2.2	20

#	Article	IF	CITATIONS
91	Interfacial Rheology of Graft-Type Polymeric Siloxane Surfactantsâ€. Langmuir, 2003, 19, 6349-6356.	1.6	32
92	Microstructure evolution in magnetorheological suspensions governed by Mason number. Physical Review E, 2003, 68, 041503.	0.8	149
93	The orientation dynamics of rigid rod suspensions under extensional flow. Journal of Rheology, 2003, 47, 371-388.	1.3	11
94	Shearing or Compressing a Soft Glass in 2D: Time-Concentration Superposition. Physical Review Letters, 2003, 90, 236101.	2.9	158
95	Influence of phase transition and photoisomerization on interfacial rheology. Physical Review E, 2003, 67, 041601.	0.8	35
96	CHAIN ROTATIONAL DYNAMICS IN MR SUSPENSIONS. International Journal of Modern Physics B, 2002, 16, 2293-2299.	1.0	17
97	Structure and Dynamics of Particle Monolayers at a Liquidâ^'Liquid Interface Subjected to Extensional Flow. Langmuir, 2002, 18, 4372-4375.	1.6	67
98	Surface Rheological Transitions in Langmuir Monolayers of Bi-Competitive Fatty Acids. Langmuir, 2002, 18, 6597-6601.	1.6	23
99	Morphology of Thermoplastic Elastomers:Â Elastomeric Polypropylene. Macromolecules, 2002, 35, 2654-2666.	2.2	62
100	Dynamic Response of Stereoblock Elastomeric Polypropylene Studied by Rheooptics and X-ray Scattering. 2. Orthogonally Oriented Crystalline Chains. Macromolecules, 2002, 35, 8498-8508.	2.2	16
101	Dynamic Response of Stereoblock Elastomeric Polypropylene Studied by Rheooptics and X-ray Scattering. 1. Influence of Isotacticity. Macromolecules, 2002, 35, 8488-8497.	2.2	20
102	Surface Shear Rheology of a Polymerizable Lipopolymer Monolayer. Langmuir, 2002, 18, 2166-2173.	1.6	18
103	Polarizable Particle Aggregation Under Rotating Magnetic Fields Using Scattering Dichroism. Journal of Colloid and Interface Science, 2002, 247, 200-209.	5.0	69
104	Development of a double-beam rheo-optical analyzer for full tensor measurement of optical anisotropy in complex fluid flow. Rheologica Acta, 2002, 41, 448-455.	1.1	11
105	Shear-banding structure orientated in the vorticity direction observed for equimolar micellar solution. Rheologica Acta, 2002, 41, 35-44.	1.1	100
106	Rotational dynamics in dipolar colloidal suspensions: video microscopy experiments and simulations results. Journal of Non-Newtonian Fluid Mechanics, 2002, 102, 135-148.	1.0	80
107	Electrophoresis of DNA Adsorbed to a Cationic Supported Bilayer. Langmuir, 2001, 17, 7396-7401.	1.6	39
108	Isotropicâ ⁻ 'Nematic Phase Transitions of Lyotropic, Two-Dimensional Liquid Crystalline Polymer Solutions. Macromolecules, 2001, 34, 6972-6977.	2.2	9

#	Article	IF	CITATIONS
109	Time Scaling Regimes in Aggregation of Magnetic Dipolar Particles: Scattering Dichroism Results. Physical Review Letters, 2001, 87, 115501.	2.9	52
110	Contraction and expansion flows of Langmuir monolayers. Journal of Non-Newtonian Fluid Mechanics, 2000, 89, 187-207.	1.0	22
111	Structure and dynamics of magnetorheological fluids in rotating magnetic fields. Physical Review E, 2000, 61, 4111-4117.	0.8	105
112	Phase Behavior and Flow Properties of "Hairy-Rod―Monolayers. Langmuir, 2000, 16, 726-734.	1.6	18
113	Surface Pressure-Induced Isotropicâ^Nematic Transition in Polymer MonolayersEffect of Solvent Molecules. Langmuir, 2000, 16, 4319-4324.	1.6	7
114	Non-Newtonian Rheology of Liquid Crystalline Polymer Monolayers. Langmuir, 2000, 16, 4325-4332.	1.6	14
115	An Interfacial Stress Rheometer To Study Rheological Transitions in Monolayers at the Airâ^'Water Interface. Langmuir, 1999, 15, 2450-2459.	1.6	321
116	Component Relaxation Processes within Elastomeric Polypropylene. Macromolecules, 1999, 32, 8100-8106.	2.2	8
117	Transient Birefringence of Elastomeric Polypropylene Subjected to Step Shear Strain. Macromolecules, 1999, 32, 8094-8099.	2.2	14
118	Elastomeric Polypropylenes from Unbridged 2-Phenylindene Zirconocene Catalysts:  Temperature Dependence of Crystallinity and Relaxation Properties. Macromolecules, 1999, 32, 3334-3340.	2.2	33
119	Time-periodic flow induced structures and instabilities in a viscoelastic surfactant solution. Journal of Non-Newtonian Fluid Mechanics, 1998, 75, 193-208.	1.0	92
120	Rheological and Thermal Properties of Elastomeric Polypropylene. Macromolecules, 1998, 31, 5343-5351.	2.2	66
121	A New Class of Shear Induced Structure in Viscoelastic Micellar Solutions. , 1998, , 525-526.		0
122	Rheo-Optical Studies of Shear-Induced Structures in Semidilute Polystyrene Solutions. Macromolecules, 1997, 30, 7232-7236.	2.2	67
123	Branched viscoelastic surfactant solutions and their response to elongational flow. Rheologica Acta, 1997, 36, 632-638.	1.1	20
124	Optical rheometry of complex fluid interfaces. Current Opinion in Colloid and Interface Science, 1997, 2, 153-157.	3.4	10
125	Direct Visualization of Flow-Induced Anisotropy in a Fatty Acid Monolayer. Langmuir, 1996, 12, 1594-1599.	1.6	37
126	Deformation and Relaxation Processes of Mono- and Bilayer Domains of Liquid Crystalline Langmuir Films on Water. Langmuir, 1996, 12, 5630-5635.	1.6	42

#	Article	IF	CITATIONS
127	Extensional Flow of a Two-Dimensional Polymer Liquid Crystal. Macromolecules, 1996, 29, 8473-8478.	2.2	24
128	In Situ Optical Studies of Flow-Induced Orientation in a Two-Dimensional Polymer Solution. Macromolecules, 1996, 29, 705-712.	2.2	27
129	Structure and rheology of wormlike micelles. Rheologica Acta, 1996, 35, 139-149.	1.1	99
130	The stress jump of a semirigid macromolecule after shear: Comparison of the elastic stress to the birefringence. Journal of Rheology, 1995, 39, 659-672.	1.3	10
131	A rheoâ€optical study of nearâ€critical polymer solutions under oscillatory shear flow. Journal of Rheology, 1995, 39, 893-906.	1.3	3
132	Investigating miscible polymer blend dynamics with optical and mechanical rheometry. Journal of Non-Crystalline Solids, 1994, 172-174, 668-673.	1.5	0
133	Structure and optical anisotropies of critical polymer solutions in electric fields. Journal of Chemical Physics, 1994, 101, 1679-1686.	1.2	9
134	Formation of Bilayer Disks and Two-Dimensional Foams on a Collapsing/Expanding Liquid-Crystal Monolayer. Langmuir, 1994, 10, 1251-1256.	1.6	113
135	<title>Structure and dynamics of liquid crystalline droplets suspended in polymer liquids</title> ., 1994, 2175, 71.		1
136	Investigation of xanthan gum solution behavior under shear flow using rheooptical techniques. Macromolecules, 1993, 26, 504-511.	2.2	54
137	Concentration fluctuation enhancement in polymer solutions by extensional flow. Macromolecules, 1993, 26, 7182-7188.	2.2	45
138	Phase transitions induced by electric fields in near-critical polymer solutions. Physical Review Letters, 1993, 71, 2236-2239.	2.9	70
139	Timeâ€dependent smallâ€angle light scattering of shearâ€induced concentration fluctuations in polymer solutions. Journal of Chemical Physics, 1992, 96, 7742-7757.	1.2	92
140	Component relaxation dynamics in a miscible polymer blend: poly(ethylene oxide)/poly(methyl) Tj ETQq0 0 0 rgBT	/ <u>Oy</u> erlock	187f 50 22
141	Electric-field-induced structure in polymer solutions near the critical point. Macromolecules, 1992, 25, 7234-7246.	2.2	28
142	Oligomers as molecular probes of orientational coupling interactions in polymer melts and networks. Polymer, 1992, 33, 2949-2960.	1.8	34
143	Field-induced anisotropy in concentrated systems of rigid particles and macromolecules. Journal of Statistical Physics, 1991, 62, 1025-1039.	0.5	3
144	The optical and mechanical response of flexible polymer solutions to extensional flow. Journal of Non-Newtonian Fluid Mechanics, 1990, 34, 63-88.	1.0	59

#	Article	IF	CITATIONS
145	Dynamics of colloidal particles in sheared, non-Newtonian fluids. Journal of Non-Newtonian Fluid Mechanics, 1990, 34, 89-121.	1.0	38
146	Infrared dichroism measurements of molecular relaxation in binary blend melt rheology. Macromolecules, 1989, 22, 1334-1345.	2.2	67
147	Note: Optical Rheometry Using a Rotary Polarization Modulator. Journal of Rheology, 1989, 33, 761-769.	1.3	72
148	Uniaxial and biaxial extensional viscosity measurements of dilute and semi-dilute solutions of rigid rod polymers. Journal of Non-Newtonian Fluid Mechanics, 1988, 30, 303-316.	1.0	37
149	The optical anisotropy of sheared hematite suspensions. Journal of Colloid and Interface Science, 1988, 124, 441-451.	5.0	22
150	The dichroism and birefringence of a hardâ€sphere suspension under shear. Journal of Chemical Physics, 1988, 89, 1580-1587.	1.2	42
151	Extensional Viscosity Measurements for Lowâ€Viscosity Fluids. Journal of Rheology, 1987, 31, 235-249.	1.3	168
152	Conservative dichroism of a sheared suspension in the Rayleigh-Gans light scattering approximation. Journal of Colloid and Interface Science, 1987, 119, 335-351.	5.0	13
153	Rheo-optical studies of the effect of weak Brownian rotations in sheared suspensions. Journal of Fluid Mechanics, 1986, 168, 119.	1.4	49
154	Some experimental results on the development of Couette flow for non-Newtonian fluids. Journal of Non-Newtonian Fluid Mechanics, 1985, 17, 233-243.	1.0	19
155	Small angle light scattering as a probe of flow-induced particle orientation. Journal of Colloid and Interface Science, 1985, 108, 149-157.	5.0	24
156	Simultaneous dichroism and birefringence measurements of dilute colloidal suspensions in transient shear flow. Journal of Colloid and Interface Science, 1985, 104, 440-455.	5.0	60
157	Adsorption and desorption of flexible polymer chains in flowing systems. Journal of Colloid and Interface Science, 1985, 103, 569-577.	5.0	86
158	The effect of segment/boundary hydrodynamic interactions on the dynamics of adsorbed polymer chains subjected to flow. Journal of Colloid and Interface Science, 1985, 107, 308-313.	5.0	2
159	Rheooptical response of rodlike chains subject to transient shear flow. 2. Two-color flow birefringence measurements on collagen protein. Macromolecules, 1985, 18, 793-804.	2.2	37
160	The dynamics of dilute colloidal suspensions subject to time-dependent flow fields by conservative dichroism. Journal of Colloid and Interface Science, 1984, 100, 506-518.	5 . 0	47
161	Ellipsometry studies of adsorbed polymer chains subjected to flow. Macromolecules, 1984, 17, 375-380.	2.2	49
162	Note: A Note on Phaseâ€Modulated Flow Birefringence: A Promising Rheoâ€Optical Method. Journal of Rheology, 1984, 28, 61-70.	1.3	77