Simon Daniel Robinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1179373/publications.pdf

Version: 2024-02-01

67 papers 3,411 citations

32 h-index 149698 56 g-index

72 all docs

72 docs citations

times ranked

72

5122 citing authors

#	Article	IF	CITATIONS
1	QSMxT: Robust masking and artifact reduction for quantitative susceptibility mapping. Magnetic Resonance in Medicine, 2022, 87, 1289-1300.	3.0	11
2	Quantitative susceptibility mapping of the headâ€andâ€neck using SMURF fatâ€water imaging with chemical shift and relaxation rate corrections. Magnetic Resonance in Medicine, 2022, 87, 1461-1479.	3.0	8
3	Phaseâ€based masking for quantitative susceptibility mapping of the human brain at 9. <scp>4T</scp> . Magnetic Resonance in Medicine, 2022, 88, 2267-2276.	3.0	7
4	Simultaneous Multiple Resonance Frequency imaging (SMURF): Fatâ€water imaging using multiâ€band principles. Magnetic Resonance in Medicine, 2021, 85, 1379-1396.	3.0	8
5	Phase unwrapping with a rapid opensource minimum spanning tree algorithm (ROMEO). Magnetic Resonance in Medicine, 2021, 85, 2294-2308.	3.0	48
6	The traveling heads 2.0: Multicenter reproducibility of quantitative imaging methods at 7 Tesla. Neurolmage, 2021, 232, 117910.	4.2	31
7	Feasibility of Hepatic Fat Quantification Using Proton Density Fat Fraction by Multi-Echo Chemical-Shift-Encoded MRI at 7T. Frontiers in Physics, 2021, 9, 665562.	2.1	0
8	Improved susceptibility weighted imaging at ultra-high field using bipolar multi-echo acquisition and optimized image processing: CLEAR-SWI. NeuroImage, 2021, 237, 118175.	4.2	19
9	Multiparametric Quantitative Brain MRI in Neurological and Hepatic Forms of Wilson's Disease. Journal of Magnetic Resonance Imaging, 2020, 51, 1829-1835.	3.4	19
10	Intraâ€session and interâ€subject variability of 3Dâ€FIDâ€MRSI using singleâ€echo volumetric EPI navigators at 3T. Magnetic Resonance in Medicine, 2020, 83, 1920-1929.	3.0	23
11	Brain Iron and Metabolic Abnormalities in C19orf12 Mutation Carriers: A 7.0 Tesla MRI Study in Mitochondrial Membrane Protein–Associated Neurodegeneration. Movement Disorders, 2020, 35, 142-150.	3.9	16
12	Reinforcement and Punishment Shape the Learning Dynamics in fMRI Neurofeedback. Frontiers in Human Neuroscience, 2020, 14, 304.	2.0	14
13	Improving sensitivity, specificity, and reproducibility of individual brainstem activation. Brain Structure and Function, 2019, 224, 2823-2838.	2.3	11
14	A comparison of static and dynamic $\hat{a}^{+}(i)B0$ mapping methods for correction of CEST MRI in the presence of temporal $B0$ field variations. Magnetic Resonance in Medicine, 2019, 82, 633-646.	3.0	19
15	The influence of spatial resolution on the spectral quality and quantification accuracy of wholeâ€brain MRSI at 1.5T, 3T, 7T, and 9.4T. Magnetic Resonance in Medicine, 2019, 82, 551-565.	3.0	22
16	The Impact of Echo Time Shifts and Temporal Signal Fluctuations on BOLD Sensitivity in Presurgical Planning at 7 T. Investigative Radiology, 2019, 54, 340-348.	6.2	3
17	Microvessels may Confound the "Swallow Tail Sign―in Normal Aged Midbrains: A Postmortem 7 T SWâ€MRI Study. Journal of Neuroimaging, 2019, 29, 65-69.	2.0	14
18	Beware detrending: Optimal preprocessing pipeline for lowâ€frequency fluctuation analysis. Human Brain Mapping, 2019, 40, 1571-1582.	3.6	14

#	Article	IF	Citations
19	Vessel architecture in human knee cartilage in children: an in vivo susceptibility-weighted imaging study at 7 T. European Radiology, 2018, 28, 3384-3392.	4.5	8
20	Key clinical benefits of neuroimaging at 7 T. Neurolmage, 2018, 168, 477-489.	4.2	113
21	A method for the dynamic correction of B O -related distortions in single-echo EPI at 7 T. Neurolmage, 2018, 168, 321-331.	4.2	57
22	The clinical relevance of distortion correction in presurgical fMRI at 7 T. Neurolmage, 2018, 168, 490-498.	4.2	16
23	The challenge of biasâ€free coil combination for quantitative susceptibility mapping at ultraâ€high field. Magnetic Resonance in Medicine, 2018, 79, 97-107.	3.0	17
24	Computationally Efficient Combination of Multiâ€channel Phase Data From Multiâ€cho Acquisitions (ASPIRE). Magnetic Resonance in Medicine, 2018, 79, 2996-3006.	3.0	72
25	In vivo phase imaging of human epiphyseal cartilage at 7 T. Magnetic Resonance in Medicine, 2018, 79, 2149-2155.	3.0	12
26	The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study. Neurolmage, 2018, 179, 117-133.	4.2	129
27	Robust presurgical functional <scp>MRI</scp> at 7 <scp>T</scp> using response consistency. Human Brain Mapping, 2017, 38, 3163-3174.	3.6	5
28	Multi-echo GRE imaging of knee cartilage. Journal of Magnetic Resonance Imaging, 2017, 45, 1502-1513.	3.4	4
29	Combining phase images from array coils using a short echo time reference scan (COMPOSER). Magnetic Resonance in Medicine, 2017, 77, 318-327.	3.0	49
30	An illustrated comparison of processing methods for phase MRI and QSM: removal of background field contributions from sources outside the region of interest. NMR in Biomedicine, 2017, 30, e3604.	2.8	124
31	An illustrated comparison of processing methods for MR phase imaging and QSM: combining array coil signals and phase unwrapping. NMR in Biomedicine, 2017, 30, e3601.	2.8	124
32	Post Mortem Validation of MRI-Identified Veins on the Surface of the Cerebral Cortex as Potential Landmarks for Neurosurgery. Frontiers in Neuroscience, 2017, 11, 355.	2.8	4
33	Comparison of Routine Brain Imaging at 3 T and 7 T. Investigative Radiology, 2016, 51, 469-482.	6.2	82
34	Clinical applications at ultrahigh field (7  T). Where does it make the difference?. NMR in Biomedicine, 2016, 29, 1316-1334.	2.8	56
35	Dynamic PCr and pH imaging of human calf muscles during exercise and recovery using ³¹ P gradientâ€Echo MRI at 7 Tesla. Magnetic Resonance in Medicine, 2016, 75, 2324-2331.	3.0	31
36	The traveling heads: multicenter brain imaging at 7 Tesla. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 399-415.	2.0	26

#	Article	IF	CITATIONS
37	fMRI of Emotion. Neuromethods, 2016, , 451-494.	0.3	1
38	Correcting dynamic distortions in 7T echo planar imaging using a jittered echo time sequence. Magnetic Resonance in Medicine, 2016, 76, 1388-1399.	3.0	20
39	Improving the clinical potential of ultra-high field fMRI using a model-free analysis method based on response consistency. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 435-449.	2.0	6
40	Quantitative Sodium MR Imaging at 7 T: Initial Results and Comparison with Diffusion-weighted Imaging in Patients with Breast Tumors. Radiology, 2016, 280, 39-48.	7.3	69
41	A method for unwrapping highly wrapped multiâ€echo phase images at very high field: UMPIRE. Magnetic Resonance in Medicine, 2014, 72, 80-92.	3.0	46
42	Anterior temporal lobe degeneration produces widespread network-driven dysfunction. Brain, 2013, 136, 2979-2991.	7.6	184
43	ICA of fMRI Studies: New Approaches and Cutting Edge Applications. Frontiers in Human Neuroscience, 2013, 7, 724.	2.0	10
44	Comparing the Microvascular Specificity of the 3- and 7-T BOLD Response Using ICA and Susceptibility-Weighted Imaging. Frontiers in Human Neuroscience, 2013, 7, 474.	2.0	11
45	Applying Independent Component Analysis to Clinical fMRI at 7 T. Frontiers in Human Neuroscience, 2013, 7, 496.	2.0	16
46	Distinct Neural Substrates for Semantic Knowledge and Naming in the Temporoparietal Network. Cerebral Cortex, 2012, 22, 2217-2226.	2.9	45
47	Culture but not gender modulates amygdala activation during explicit emotion recognition. BMC Neuroscience, 2012, 13, 54.	1.9	35
48	Comparing localized and nonlocalized dynamic ³¹ P magnetic resonance spectroscopy in exercising muscle at 7T. Magnetic Resonance in Medicine, 2012, 68, 1713-1723.	3.0	55
49	Clinical fMRI: Evidence for a 7T benefit over 3T. Neurolmage, 2011, 57, 1015-1021.	4.2	110
50	Combining phase images from multiâ€channel RF coils using 3D phase offset maps derived from a dualâ€echo scan. Magnetic Resonance in Medicine, 2011, 65, 1638-1648.	3.0	81
51	<i>B</i> ₀ mapping with multi hannel RF coils at high field. Magnetic Resonance in Medicine, 2011, 66, 976-988.	3.0	44
52	A Neuronal Basis for Task-Negative Responses in the Human Brain. Cerebral Cortex, 2011, 21, 821-830.	2.9	71
53	Amygdala activation during recognition of emotions in a foreign ethnic group is associated with duration of stay. Social Neuroscience, 2009, 4, 294-307.	1.3	50
54	Amygdala activity to fear and anger in healthy young males is associated with testosterone. Psychoneuroendocrinology, 2009, 34, 687-693.	2.7	166

#	Article	IF	CITATIONS
55	A resting state network in the motor control circuit of the basal ganglia. BMC Neuroscience, 2009, 10, 137.	1.9	134
56	General and specific responsiveness of the amygdala during explicit emotion recognition in females and males. BMC Neuroscience, 2009, 10, 91.	1.9	76
57	fMRI of Emotion. Neuromethods, 2009, , 411-456.	0.3	8
58	The impact of EPI voxel size on SNR and BOLD sensitivity in the anterior medio-temporal lobe: a comparative group study of deactivation of the Default Mode. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2008, 21, 279-290.	2.0	45
59	Facial emotion recognition and amygdala activation are associated with menstrual cycle phase. Psychoneuroendocrinology, 2008, 33, 1031-1040.	2.7	156
60	Altered reward processing in the nucleus accumbens and mesial prefrontal cortex of patients with posttraumatic stress disorder. Neuropsychologia, 2008, 46, 2836-2844.	1.6	169
61	Imaging the changing role of feedback during learning in decision-making. Neurolmage, 2007, 37, 1474-1486.	4.2	24
62	Amygdala activation at 3T in response to human and avatar facial expressions of emotions. Journal of Neuroscience Methods, 2007, 161, 126-133.	2.5	110
63	Amygdala activation and facial expressions: Explicit emotion discrimination versus implicit emotion processing. Neuropsychologia, 2007, 45, 2369-2377.	1.6	171
64	The selection of intended actions and the observation of others' actions: A time-resolved fMRI study. NeuroImage, 2006, 29, 1294-1302.	4.2	123
65	A comparison of PET imaging characteristics of various copper radioisotopes. European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32, 1473-1480.	6.4	82
66	FMRI of the Emotions: Towards an Improved Understanding of Amygdala Function. Current Medical Imaging, 2005, 1, 115-129.	0.8	14
67	Robust field map generation using a triple-echo acquisition. Journal of Magnetic Resonance Imaging, 2004, 20, 730-734.	3.4	59