Simon Daniel Robinson

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/1179373/publications.pdf
Version: 2024-02-01


```
1 Anterior temporal lobe degeneration produces widespread network-driven dysfunction. Brain, 2013,
136, 2979-2991.
```

Amygdala activation and facial expressions: Explicit emotion discrimination versus implicit emotion processing. Neuropsychologia, 2007, 45, 2369-2377.
1.6

171
2

Altered reward processing in the nucleus accumbens and mesial prefrontal cortex of patients with
posttraumatic stress disorder. Neuropsychologia, 2008, 46, 2836-2844.
1.6

Amygdala activity to fear and anger in healthy young males is associated with testosterone.
Psychoneuroendocrinology, 2009, 34, 687-693.

Facial emotion recognition and amygdala activation are associated with menstrual cycle phase.
Facial emotion recognition and amygdala activation
Psychoneuroendocrinology, 2008, 33, 1031-1040.
$2.7 \quad 156$

6 A resting state network in the motor control circuit of the basal ganglia. BMC Neuroscience, 2009, 10,
1.9

134
137.

The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation -
$7 \quad$ A biochemical and histological validation study. Neurolmage, 2018, 179, 117-133.
4.2

129

8 An illustrated comparison of processing methods for phase MRI and QSM: removal of background
field contributions from sources outside the region of interest. NMR in Biomedicine, 2017, 30, e3604.
2.8

124
An illustrated comparison of processing methods for MR phase imaging and QSM: combining array
coil signals and phase unwrapping. NMR in Biomedicine, 2017,30, e3601.

10 The selection of intended actions and the observation of others' actions: A time-resolved fMRI study.
Neurolmage, 2006, 29, 1294-1302.
4.2

123

11 Key clinical benefits of neuroimaging at 7 T. Neurolmage, 2018, 168, 477-489.
$4.2 \quad 113$

12 Amygdala activation at 3 T in response to human and avatar facial expressions of emotions. Journal of
12 Neuroscience Methods, 2007, 161, 126-133.
2.5

110

13 Clinical fMRI: Evidence for a 7T benefit over 3T. Neurolmage, 2011, 57, 1015-1021.
4.2

110

A comparison of PET imaging characteristics of various copper radioisotopes. European Journal of Nuclear Medicine and Molecular Imaging, 2005, 32, 1473-1480.
6.4

82

15 Comparison of Routine Brain Imaging at 3 T and 7 T. Investigative Radiology, 2016, 51, 469-482.
6.2

82
19
20
Robust field map generation using a triple-echo acquisition. Journal of Magnetic Resonance Imaging,
$2004,20,730-734$.

22 A method for the dynamic correction of B 0 -related distortions in single-echo EPI at 7 T. Neurolmage,
Clinical applications at ultrahigh field ($7 \mathrm{â} € \%$ â $€ \%$ \% $)$. Where does it make the difference?. NMR in Biomedicine, $2.8 \quad 56$
23 2016, 29, 1316-1334.Comparing localized and nonlocalized dynamic ³¹P magnetic resonance spectroscopy in$3.0 \quad 55$
exercising muscle at 7T. Magnetic Resonance in Medicine, 2012, 68, 1713-1723.55
25 Amygdala activation during recognition of emotions in a foreign ethnic group is associated withduration of stay. Social Neuroscience, 2009, 4, 294-307.1.350
26 Combining phase images from array coils using a short echo time reference scan (COMPOSER).
Magnetic Resonance in Medicine, 2017, 77, 318-327.3.049
27 Phase unwrapping with a rapid opensource minimum spanning tree algorithm (ROMEO). Magnetic
Resonance in Medicine, 2021, 85, 2294-2308.
Resonance in Medicine, 2021, 85, 2294-2308.3.048
A method for unwrapping highly wrapped multiâ€echo phase images at very high field: UMPIRE. Magnetic
Resonance in Medicine, 2014, 72, 80-92. 3.0 46
28The impact of EPI voxel size on SNR and BOLD sensitivity in the anterior medio-temporal lobe: a
29 comparative group study of deactivation of the Default Mode. Magnetic Resonance Materials in2.045Physics, Biology, and Medicine, 2008, 21, 279-290.
30 Distinct Neural Substrates for Semantic Knowledge and Naming in the Temporoparietal Network. Cerebral Cortex, 2012, 22, 2217-2226.2.9453.044
$31 \quad \begin{aligned} & \text { <i> } \mathrm{B}<|\mathrm{i}\rangle<\text { sub }>0</ s u b>\text { mappin } \\ & \text { Medicine, 2011, 66, 976-988. }\end{aligned}$3.0Culture but not gender modulates amygdala activation during explicit emotion recognition. BMC1.935
Neuroscience, 2012, 13, 54.Dynamic PCr and pH imaging of human calf muscles during exercise and recovery using ³¹PThe traveling heads 2.0: Multicenter reproducibility of quantitative imaging methods at 7 Tesla.Neurolmage, 2021, 232, 117910.
The traveling heads: multicenter brain imaging at 7 Tesla. Magnetic Resonance Materials in Physics,
Biology, and Medicine, 2016, 29, 399-415.
37

$$
\begin{aligned}
& \text { Intraâ€session and interâ€subject variability of 3Dâ€FIDâ€MRSI using singleâ€echo volumetric EPI navigators at } \\
& \text { 3T. Magnetic Resonance in Medicine, 2020, 83, 1920-1929. }
\end{aligned}
$$

The influence of spatial resolution on the spectral quality and quantification accuracy of
3.0

22
38 wholeâ€brain MRSI at 1.5T, 3T, 7T, and 9.4T. Magnetic Resonance in Medicine, 2019, 82, 551-565.

39	Correcting dynamic distortions in 7T echo planar imaging using a jittered echo time sequence. Magnetic Resonance in Medicine, 2016, 76, 1388-1399.	3.0	20
40	A comparison of static and dynamic â^ $\dagger\langle\mathrm{i}\rangle \mathrm{B}\langle/ \mathrm{i}\rangle\langle\mathrm{sub}\rangle 0</ \mathrm{sub}\rangle$ mapping methods for correction of CEST MRI in the presence of temporal $\langle\mathrm{i}\rangle \mathrm{B}\langle\mid \mathrm{i}\rangle\langle$ sub $\rangle\langle\langle/$ sub \rangle field variations. Magnetic Resonance in Medicine, 2019, 82, 633-646.	3.0	19
41	Multiparametric Quantitative Brain MRI in Neurological and Hepatic Forms of Wilson's Disease. Journal of Magnetic Resonance Imaging, 2020, 51, 1829-1835.	3.4	19
42	Improved susceptibility weighted imaging at ultra-high field using bipolar multi-echo acquisition and optimized image processing: CLEAR-SWI. Neurolmage, 2021, 237, 118175.	4.2	19
43	The challenge of biasâ€free coil combination for quantitative susceptibility mapping at ultraâ€high field. Magnetic Resonance in Medicine, 2018, 79, 97-107.	3.0	17
44	Applying Independent Component Analysis to Clinical fMRI at 7â€\%oT. Frontiers in Human Neuroscience, 2013, 7, 496.	2.0	16
45	The clinical relevance of distortion correction in presurgical fMRI at 7 T. Neurolmage, 2018, 168, 490-498.	4.2	16

46 Mitochondrial Membrane Proteinâ€"Associated Neurodegeneration. Movement Disorders, 2020, 35,

3.9

16
142-150.

$$
\begin{aligned}
& \text { FMRI of the Emotions: Towards an Improved Understanding of Amygdala Function. Current Medical } \\
& \text { Imaging, 2005, 1, 115-129. }
\end{aligned}
$$

$0.8 \quad 14$
Microvessels may Confound the â€œSwallow Tail Signâ€•in Normal Aged Midbrains: A Postmortem 7 T 2.0 14 SWâ€MRI Study. Journal of Neuroimaging, 2019, 29, 65-69.
$3.6 \quad 14$14
$49 \quad$ Brain Mapping, 2019, 40, 1571-1582.Reinforcement and Punishment Shape the Learning Dynamics in fMRI Neurofeedback. Frontiers in
55 ICA of fMRI Studies: New Approaches and Cutting Edge Applications. Frontiers in Human Neuroscience,
Vessel architecture in human knee cartilage in children: an in vivo susceptibility-weighted imaging study at 7 T. European Radiology, 2018, 28, 3384-3392.
56

Simultaneous Multiple Resonance Frequency imaging (SMURF): Fatâ€water imaging using multiâ€band
$57 \quad \begin{aligned} & \text { Simultaneous Multiple Resonance Frequency imaging (SMuRF): Fat } \\ & \text { principles. Magnetic Resonance in Medicine, 2021, 85, 1379-1396. }\end{aligned}$
$3.0 \quad 8$
0.38

58 fMRI of Emotion. Neuromethods, 2009, , 411-456.

59	Quantitative susceptibility mapping of the headâ€andâ€neck using SMURF fatâ€water imaging with chemical shift and relaxation rate corrections. Magnetic Resonance in Medicine, 2022, 87, 1461-1479.	3.0	8
60	Phaseâ€based masking for quantitative susceptibility mapping of the human brain at $9 .\langle\mathrm{scp}\rangle 4 \mathrm{~T}</ \mathrm{scp}>$. Magnetic Resonance in Medicine, 2022, 88, 2267-2276.	3.0	7
61	Improving the clinical potential of ultra-high field fMRI using a model-free analysis method based on response consistency. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2016, 29, 435-449.	2.0	6
62	Robust presurgical functional <scp>MRI</scp> at $7\langle s c p\rangle T</ s c p\rangle$ using response consistency. Human Brain Mapping, 2017, 38, 3163-3174.	3.6	5
63	Multi-echo GRE imaging of knee cartilage. Journal of Magnetic Resonance Imaging, 2017, 45, 1502-1513.	3.4	4
64	Post Mortem Validation of MRI-Identified Veins on the Surface of the Cerebral Cortex as Potential Landmarks for Neurosurgery. Frontiers in Neuroscience, 2017, 11, 355.	2.8	4
65	The Impact of Echo Time Shifts and Temporal Signal Fluctuations on BOLD Sensitivity in Presurgical Planning at 7 T. Investigative Radiology, 2019, 54, 340-348.	6.2	3
66	fMRI of Emotion. Neuromethods, 2016, , 451-494.	0.3	1
67	Feasibility of Hepatic Fat Quantification Using Proton Density Fat Fraction by Multi-Echo Chemical-Shift-Encoded MRI at 7T. Frontiers in Physics, $2021,9,665562$.	2.1	0

