Gian Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1178837/publications.pdf

Version: 2024-02-01

		567281	501196
37	801	15	28
papers	citations	h-index	g-index
37	37	37	675
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy. Science Advances, 2020, 6, .	10.3	101
2	Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates. Scientific Reports, $2015, 5, 16327$.	3.3	80
3	New design aspects of creep-resistant NiAl-strengthened ferritic alloys. Scripta Materialia, 2013, 68, 384-388.	5.2	76
4	Microstructural evolution of single Ni2TiAl or hierarchical NiAl/Ni2TiAl precipitates in Fe-Ni-Al-Cr-Ti ferritic alloys during thermal treatment for elevated-temperature applications. Acta Materialia, 2017, 127, 1-16.	7.9	62
5	Nano-sized precipitate stability and its controlling factors in a NiAl-strengthened ferritic alloy. Scientific Reports, 2015, 5, 16081.	3.3	37
6	Duplex Precipitates and Their Effects on the Room-temperature Fracture Behaviour of a NiAl-Strengthened Ferritic Alloy. Materials Research Letters, 2015, 3, 128-134.	8.7	31
7	Characterization of Crystallographic Structures Using Bragg-Edge Neutron Imaging at the Spallation Neutron Source. Journal of Imaging, 2017, 3, 65.	3.0	31
8	Heterogeneous eutectic structure in Ti–Fe–Sn alloys. Intermetallics, 2011, 19, 536-540.	3.9	30
9	Microstructural characteristics of a Ni2TiAl-precipitate-strengthened ferritic alloy. Journal of Alloys and Compounds, 2017, 693, 921-928.	5.5	30
10	Optimization of B2/L21 hierarchical precipitate structure to improve creep resistance of a ferritic Fe-Ni-Al-Cr-Ti superalloy via thermal treatments. Scripta Materialia, 2019, 161, 18-22.	5.2	30
11	Chemical heterogeneity-induced plasticity in Ti–Fe–Bi ultrafine eutectic alloys. Materials & Design, 2014, 60, 363-367.	5.1	23
12	High Temperature Deformation Mechanism in Hierarchical and Single Precipitate Strengthened Ferritic Alloys by In Situ Neutron Diffraction Studies. Scientific Reports, 2017, 7, 45965.	3.3	22
13	Effect of microstructure modulation on mechanical properties of Ti-Fe-Sn ultrafine eutectic composites. Metals and Materials International, 2011, 17, 873-877.	3.4	20
14	Martensitic transformation in a B2-containing CuZr-based BMG composite revealed by in situ neutron diffraction. Journal of Alloys and Compounds, 2017, 723, 714-721.	5.5	18
15	Mechanical properties of large-scale Mg–Cu–Zn ultrafine eutectic composites. Journal of Alloys and Compounds, 2009, 481, 135-139.	5.5	17
16	Primary and secondary precipitates in a hierarchical-precipitate-strengthened ferritic alloy. Journal of Alloys and Compounds, 2017, 706, 584-588.	5.5	15
17	Understanding of martensitic (TiCu)-based bulk metallic glasses through deformation behavior of a binary Ti50Cu50 martensitic alloy. Applied Physics Letters, 2008, 92, 241915.	3.3	13
18	Optimization of mechanical properties of Ti–Fe–Sn alloys by controlling heterogeneous eutectic structure. Intermetallics, 2012, 23, 27-31.	3.9	13

#	Article	IF	CITATIONS
19	Heterogeneous duplex structured Ti–Sn–Mo alloys with high strength and large plastic deformability. Journal of Alloys and Compounds, 2013, 574, 546-551.	5.5	13
20	Development of coherent-precipitate-hardened high-entropy alloys with hierarchical NiAl/Ni2TiAl precipitates in CrMnFeCoNiAlxTiy alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 823, 141763.	5.6	13
21	Microstructural evolution and mechanical properties of Mg–Cu–Zn ultrafine eutectic composites. Journal of Materials Research, 2009, 24, 2892-2898.	2.6	12
22	Solid-state phase transformation-induced heterogeneous duplex structure in Ti–Sn–Fe alloys. Journal of Alloys and Compounds, 2012, 515, 86-89.	5.5	12
23	Formation of bimodal eutectic structure in Ti63.5Fe30.5Sn6 and Mg72Cu5Zn23 alloys. Journal of Alloys and Compounds, 2011, 509, S353-S356.	5.5	11
24	Necking mechanisms on porous metallic glass and W compacts using electro-discharge sintering. Journal of Alloys and Compounds, 2012, 536, S78-S82.	5 . 5	11
25	Investigation of the mechanical properties of Ti-Fe-Sn ultrafine eutectic composites by dendrite phase selection. Metals and Materials International, 2014, 20, 417-421.	3.4	11
26	Load partitioning between the bcc-iron matrix and NiAl-type precipitates in a ferritic alloy on multiple length scales. Scientific Reports, 2016, 6, 23137.	3.3	10
27	Microstructural modulation of Ti–Fe–V ultrafine eutectic alloys with enhanced mechanical properties. Journal of Alloys and Compounds, 2010, 491, 178-181.	5.5	9
28	Outstanding high-temperature strength of novel Fe–Cr–Ni–Al–V ferritic alloys with hierarchical B2–NiAl precipitates. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142999.	5.6	9
29	Effect of additional Zn on plasticity of large-scale Mg-based nanostructure-dendrite composites. Metals and Materials International, 2009, 15, 175-178.	3.4	8
30	Effect of solubility on strengthening of Ag–Cu ultrafine eutectic composites. Journal of Alloys and Compounds, 2011, 509, 9015-9018.	5. 5	8
31	Developing high-strength ferritic alloys reinforced by combination of hierarchical and laves precipitates. Journal of Alloys and Compounds, 2021, 856, 158162.	5.5	8
32	FABRICATION OF POROUS Ti- AND W-COMPACTS BY ELECTRO-DISCHARGE-SINTERING PROCESS. Surface Review and Letters, 2010, 17, 245-250.	1.1	5
33	Effect of Si on microstructure and mechanical properties of Fe-based ultrafine eutectic composites. Intermetallics, 2010, 18, 1856-1859.	3.9	4
34	Influence of hetero-duplex structure on mechanical properties of Mg–Al/Cu–Zn alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 371-378.	5.6	2
35	Deformation mechanisms of a bimodal eutectic Mg72Cu5Zn23 ultrafine composite. Materials Letters, 2010, 64, 534-536.	2.6	2
36	Effect of Nb on microstructure and mechanical properties of ultrafine eutectic Fe–Ni–B–Si composites. Journal of Alloys and Compounds, 2010, 504, S487-S490.	5. 5	2

#	Article	IF	CITATIONS
37	bem: modeling for neutron Bragg-edge imaging. Journal of Open Source Software, 2018, 3, 973.	4.6	2