Amit Kumar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11787753/publications.pdf

Version: 2024-02-01

20 2,585 18 20 papers citations h-index g-index

20 20 20 3643 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Tissue deposition and toxicological effects of commercially significant rare earth oxide nanomaterials: Material and physical properties. Environmental Toxicology, 2017, 32, 904-917.	4.0	22
2	Aqueous medium induced optical transitions in cerium oxide nanoparticles. Physical Chemistry Chemical Physics, 2015, 17, 6217-6221.	2.8	13
3	Behavior of nanoceria in biologically-relevant environments. Environmental Science: Nano, 2014, 1, 516-532.	4.3	94
4	Mitigation of endometriosis using regenerative cerium oxide nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 439-448.	3.3	84
5	Effects of cerium oxide nanoparticles on the growth of keratinocytes, fibroblasts and vascular endothelial cells in cutaneous wound healing. Biomaterials, 2013, 34, 2194-2201.	11.4	301
6	Cellular Interaction and Toxicity Depend on Physicochemical Properties and Surface Modification of Redox-Active Nanomaterials. ACS Nano, 2013, 7, 4855-4868.	14.6	179
7	Morphological Phase Diagram of Biocatalytically Active Ceria Nanostructures as a Function of Processing Variables and Their Properties. ChemPlusChem, 2013, 78, 1446-1455.	2.8	45
8	Antibacterial Activity of Polymer Coated Cerium Oxide Nanoparticles. PLoS ONE, 2012, 7, e47827.	2.5	91
9	Laser irradiated nano-architectured undoped tin oxide arrays: mechanism of ultrasensitive room temperature hydrogen sensing. Nanoscale, 2012, 4, 7256.	5.6	8
10	Cerium oxide nanoparticles scavenge nitric oxide radical (˙NO). Chemical Communications, 2012, 48, 4896.	4.1	222
11	A facile synthesis of PLGA encapsulated cerium oxide nanoparticles: release kinetics and biological activity. Nanoscale, 2012, 4, 2597.	5.6	48
12	The induction of angiogenesis by cerium oxide nanoparticles through the modulation of oxygen in intracellular environments. Biomaterials, 2012, 33, 7746-7755.	11.4	247
13	Mechanical properties of ceria nanorods and nanochains; the effect of dislocations, grain-boundaries and oriented attachment. Nanoscale, 2011, 3, 1823.	5.6	42
14	A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials, 2011, 32, 6745-6753.	11.4	285
15	Hydrogen selective gas sensor in humid environment based on polymer coated nanostructured-doped tin oxide. Sensors and Actuators B: Chemical, 2011, 155, 884-892.	7.8	36
16	Understanding the toxicity of aggregated zero valent copper nanoparticles against Escherichia coli. Journal of Hazardous Materials, 2010, 180, 212-216.	12.4	96
17	Influence of iron and copper nanoparticle powder on the production of lignocellulose degrading enzymes in the fungus Trametes versicolor. Journal of Hazardous Materials, 2010, 178, 1141-1145.	12.4	72
18	Unveiling the mechanism of uptake and sub-cellular distribution of cerium oxide nanoparticles. Molecular BioSystems, 2010, 6, 1813.	2.9	144

#	Article	IF	CITATIONS
19	Luminescence Properties of Europium-Doped Cerium Oxide Nanoparticles: Role of Vacancy and Oxidation States. Langmuir, 2009, 25, 10998-11007.	3.5	254
20	PEGylated Nanoceria as Radical Scavenger with Tunable Redox Chemistry. Journal of the American Chemical Society, 2009, 131, 14144-14145.	13.7	302