Axel Jacobi von Wangelin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1178678/publications.pdf

Version: 2024-02-01

126 papers 7,022 citations

45 h-index 80 g-index

179 all docs

179 docs citations

times ranked

179

5661 citing authors

#	Article	IF	CITATIONS
1	Redoxâ€active BIANâ€based Diimine Ligands in Metalâ€Catalyzed Small Molecule Syntheses**. ChemCatChem, 2022, 14, .	3.7	34
2	Selective Benzylic CHâ€Borylations by Tandem Cobalt Catalysis. Angewandte Chemie, 2022, 134, .	2.0	3
3	Photoredox-Catalyzed Synthesis of α-Amino Acid Amides by Imine Carbamoylation. Organic Letters, 2022, 24, 506-510.	4.6	21
4	Polynuclear Iron(II) Pyridonates: Synthesis and Reactivity of Fe ₄ and Fe ₅ Clusters. Inorganic Chemistry, 2022, 61, 6149-6159.	4.0	6
5	Planar Iron Hydride Nanoclusters: Combined Spectroscopic and Theoretical Insights into Structures and Building Principles. ChemistryOpen, 2021, 10, 265-271.	1.9	0
6	Manganeseâ€Catalyzed Hydroborations with Broad Scope. Angewandte Chemie - International Edition, 2021, 60, 16035-16043.	13.8	43
7	Manganeseâ€Catalyzed Hydroborations with Broad Scope. Angewandte Chemie, 2021, 133, 16171-16179.	2.0	10
8	Lightâ€Driven Wasteâ€Toâ€Value Upcycling: Bioâ€Based Polyols and Polyurethanes from the Photoâ€Oxygenation of Cardanols. ChemSusChem, 2021, 14, 3325-3332.	6.8	7
9	Selective Benzylic CHâ€Borylations by Tandem Cobalt Catalysis. Angewandte Chemie - International Edition, 2021, , .	13.8	10
10	Next generation luminol derivative as powerful benchmark probe for chemiluminescence assays. Analytica Chimica Acta, 2021, 1188, 339161.	5.4	8
11	Stereoselective Chromium atalyzed Semiâ€Hydrogenation of Alkynes. ChemCatChem, 2020, 12, 5359-5363.	3.7	16
12	Aryl Pyrazoles from Photocatalytic Cycloadditions of Arenediazonium. Organic Letters, 2020, 22, 7219-7224.	4.6	25
13	Heterogeneous Olefin Hydrogenation Enabled by a Highlyâ€Reduced Nickel(â^II) Catalyst Precursor. Chemistry - A European Journal, 2020, 26, 6089-6089.	3.3	2
14	Photoredoxâ€Catalyzed Addition of Carbamoyl Radicals to Olefins: A 1,4â€Dihydropyridine Approach. Chemistry - A European Journal, 2020, 26, 8239-8243.	3.3	32
15	Homogeneous <i>vs.</i> heterogeneous: mechanistic insights into iron group metal-catalyzed reductions from poisoning experiments. Catalysis Science and Technology, 2020, 10, 3502-3514.	4.1	35
16	Combined Photoredox and Iron Catalysis for the Cyclotrimerization of Alkynes. Angewandte Chemie - International Edition, 2020, 59, 13473-13478.	13.8	47
17	An entirely solvent-free photooxygenation of olefins under continuous flow conditions. Green Chemistry, 2020, 22, 2359-2364.	9.0	11
18	Combined Photoredox and Iron Catalysis for the Cyclotrimerization of Alkynes. Angewandte Chemie, 2020, 132, 13575-13580.	2.0	3

#	Article	IF	Citations
19	Lithium amide catalyzed hydroboration of nitriles. Organic Chemistry Frontiers, 2020, 7, 960-966.	4.5	38
20	The Role of Organoferrates in Ironâ€Catalyzed Crossâ€Couplings. Angewandte Chemie - International Edition, 2020, 59, 5434-5437.	13.8	12
21	Catalyst-Free <i>N</i> -Deoxygenation by Photoexcitation of Hantzsch Ester. Organic Letters, 2020, 22, 1316-1320.	4.6	35
22	Heterogeneous Olefin Hydrogenation Enabled by a Highlyâ€Reduced Nickel(â^'II) Catalyst Precursor. Chemistry - A European Journal, 2020, 26, 6113-6117.	3.3	14
23	Zur Rolle von Organoferraten in eisenkatalysierten Kreuzkupplungen. Angewandte Chemie, 2020, 132, 5474-5477.	2.0	3
24	Cobalt-Catalyzed Hydrogenations via Olefin Cobaltate and Hydride Intermediates. ACS Catalysis, 2019, 9, 7596-7606.	11.2	46
25	Stereoselective Alkyne Hydrogenation by using a Simple Iron Catalyst. ChemSusChem, 2019, 12, 3864-3870.	6.8	17
26	Visible light-mediated photo-oxygenation of arylcyclohexenes. Organic Chemistry Frontiers, 2019, 6, 2877-2883.	4.5	16
27	A Carbeneâ€Extended ATRA Reaction. Angewandte Chemie - International Edition, 2019, 58, 17241-17245.	13.8	10
28	A Carbeneâ€Extended ATRA Reaction. Angewandte Chemie, 2019, 131, 17401-17405.	2.0	2
29	Synthesis and Reactivity of an Earlyâ€√ransitionâ€Metal Alkynyl Cubane Mn ₄ C ₄ Cluster. Angewandte Chemie - International Edition, 2019, 58, 3466-3470.	13.8	15
30	Synthesis and Reactivity of an Earlyâ€Transitionâ€Metal Alkynyl Cubane Mn ₄ C ₄ Cluster. Angewandte Chemie, 2019, 131, 3504-3508.	2.0	4
31	Bimetallic Co/Al nanoparticles in an ionic liquid: synthesis and application in alkyne hydrogenation. New Journal of Chemistry, 2019, 43, 16583-16594.	2.8	15
32	Iron-catalysed allylation–hydrogenation sequences as masked alkyl–alkyl cross-couplings. RSC Advances, 2019, 9, 31217-31223.	3.6	3
33	Amineâ€Borane Dehydrogenation and Transfer Hydrogenation Catalyzed by αâ€Điimine Cobaltates. Chemistry - A European Journal, 2019, 25, 238-245.	3.3	58
34	A Manganese Nanosheet: New Cluster Topology and Catalysis. Angewandte Chemie, 2018, 130, 5064-5069.	2.0	13
35	Recyclable cobalt(0) nanoparticle catalysts for hydrogenations. Catalysis Science and Technology, 2018, 8, 2648-2653.	4.1	30
36	A Manganese Nanosheet: New Cluster Topology and Catalysis. Angewandte Chemie - International Edition, 2018, 57, 4970-4975.	13.8	38

#	Article	IF	Citations
37	Olefinâ€Stabilized Cobalt Nanoparticles for C=C, C=O, and C=N Hydrogenations. Chemistry - A European Journal, 2018, 24, 3403-3407.	3.3	28
38	Stereoselective cobalt-catalyzed halofluoroalkylation of alkynes. Chemical Science, 2018, 9, 1795-1802.	7.4	76
39	Elektrochemilumineszenzâ€Bioassays können Fluoreszenzassays mithilfe eines wasserlöslichen Luminolderivats Ã⅓bertreffen. Angewandte Chemie, 2018, 130, 414-418.	2.0	17
40	Electrochemiluminescence Bioassays with a Waterâ€Soluble Luminol Derivative Can Outperform Fluorescence Assays. Angewandte Chemie - International Edition, 2018, 57, 408-411.	13.8	109
41	Dichromatic Photocatalytic Substitutions of Aryl Halides with a Small Organic Dye. Chemistry - A European Journal, 2018, 24, 105-108.	3.3	113
42	Regiocontrol in the cobalt-catalyzed hydrosilylation of alkynes. Chemical Communications, 2018, 54, 12322-12325.	4.1	52
43	Stereoselective Photooxidations by the Schenck Ene Reaction. ChemPhotoChem, 2018, 2, 559-570.	3.0	29
44	Iron-catalysed Suzuki biaryl couplings. Nature Catalysis, 2018, 1, 377-378.	34.4	17
45	Aromatic substitutions of arenediazonium salts <i>via</i> metal catalysis, single electron transfer, and weak base mediation. Organic and Biomolecular Chemistry, 2018, 16, 4942-4953.	2.8	44
46	Alkene Hydrogenations by Soluble Iron Nanocluster Catalysts. Angewandte Chemie - International Edition, 2017, 56, 3585-3589.	13.8	75
47	Alkene Hydrogenations by Soluble Iron Nanocluster Catalysts. Angewandte Chemie, 2017, 129, 3639-3643.	2.0	23
48	Ironâ€Catalyzed Cyclotrimerization of Terminal Alkynes by Dual Catalyst Activation in the Absence of Reductants. Angewandte Chemie - International Edition, 2017, 56, 8451-8454.	13.8	47
49	Synthesis and Catalysis of Redoxâ€Active Bis(imino)acenaphthene (BIAN) Iron Complexes. ChemCatChem, 2017, 9, 3203-3209.	3.7	58
50	Alkene Metalates as Hydrogenation Catalysts. Chemistry - A European Journal, 2017, 23, 3139-3151.	3.3	66
51	Radical Aromatic Trifluoromethylthiolation: Photoredox Catalysis vs. Base Mediation. European Journal of Organic Chemistry, 2017, 2017, 6722-6725.	2.4	25
52	Metal-free radical aromatic carbonylations mediated by weak bases. Organic and Biomolecular Chemistry, 2017, 15, 6715-6719.	2.8	19
53	Ironâ€Catalyzed Cyclotrimerization of Terminal Alkynes by Dual Catalyst Activation in the Absence of Reductants. Angewandte Chemie, 2017, 129, 8571-8574.	2.0	14
54	Aromatic Chlorosulfonylation by Photoredox Catalysis. ChemSusChem, 2017, 10, 151-155.	6.8	30

#	Article	IF	CITATIONS
55	A flow reactor setup for photochemistry of biphasic gas/liquid reactions. Beilstein Journal of Organic Chemistry, 2016, 12, 1798-1811.	2.2	32
56	Metal-free radical thiolations mediated by very weak bases. Organic and Biomolecular Chemistry, 2016, 14, 11347-11352.	2.8	33
57	Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions. Accounts of Chemical Research, 2016, 49, 2316-2327.	15.6	241
58	Ironâ€Catalyzed Crossâ€Coupling of Alkenyl Acetates. Angewandte Chemie - International Edition, 2015, 54, 10545-10549.	13.8	119
59	Steric Enhancement of the Chemiluminescence of Luminols. Chemistry - A European Journal, 2015, 21, 9975-9979.	3.3	24
60	Hydroaminations of Alkenes: A Radical, Revised, and Expanded Version. Angewandte Chemie - International Edition, 2015, 54, 11906-11908.	13.8	51
61	Application of Visibleâ€toâ€UV Photon Upconversion to Photoredox Catalysis: The Activation of Aryl Bromides. Chemistry - A European Journal, 2015, 21, 15496-15501.	3.3	127
62	Visible Light Driven Hydroâ€∤Deuterodefunctionalization of Anilines. Chemistry - A European Journal, 2015, 21, 4518-4522.	3.3	49
63	Iron-catalyzed olefin hydrogenation at 1 bar H ₂ with a FeCl ₃ –LiAlH ₄ catalyst. Green Chemistry, 2015, 17, 1408-1413.	9.0	58
64	Intragel photoreduction of aryl halides by green-to-blue upconversion under aerobic conditions. Chemical Communications, 2015, 51, 16848-16851.	4.1	84
65	Metalâ€Free Carbonylations by Photoredox Catalysis. Angewandte Chemie - International Edition, 2015, 54, 2270-2274.	13.8	162
66	Modular synthesis of cyclic cis- and trans-1,2-diamine derivatives. Organic and Biomolecular Chemistry, 2014, 12, 5267-5277.	2.8	9
67	Heteroatomâ€Free Areneâ€Cobalt and Areneâ€Iron Catalysts for Hydrogenations. Angewandte Chemie - International Edition, 2014, 53, 3722-3726.	13.8	136
68	Reductive Crossâ€Coupling Reactions between Two Electrophiles. Chemistry - A European Journal, 2014, 20, 6828-6842.	3.3	535
69	Stereoselective iron-catalyzed alkyne hydrogenation in ionic liquids. Chemical Communications, 2014, 50, 2261-2264.	4.1	84
70	On the mechanism of photocatalytic reactions with eosin Y. Beilstein Journal of Organic Chemistry, 2014, 10, 981-989.	2.2	228
71	Highly practical iron-catalyzed C–O cleavage reactions. Catalysis Science and Technology, 2013, 3, 2541.	4.1	19
72	Olefinâ€Assisted Ironâ€Catalyzed Alkylation of Aryl Chlorides. Advanced Synthesis and Catalysis, 2013, 355, 2197-2202.	4.3	30

#	Article	IF	CITATIONS
7 3	Highly chemoselective cobalt-catalyzed biaryl coupling reactions. Chemical Science, 2013, 4, 776-784.	7.4	38
74	Ironâ€Catalyzed Synthesis of Cyclopropyl Halides. ChemCatChem, 2013, 5, 706-710.	3.7	14
75	Ambientâ€Lightâ€Mediated Copperâ€Catalyzed CC and CN Bond Formation. Angewandte Chemie - International Edition, 2013, 52, 5919-5921.	13.8	65
76	Organocatalytic visible light mediated synthesis of aryl sulfides. Chemical Communications, 2013, 49, 5507.	4.1	130
77	Iron(0) Nanoparticle Catalysts in Organic Synthesis. Current Organic Chemistry, 2013, 17, 326-335.	1.6	48
78	Development of Zn–ProPhenolâ€Catalyzed Asymmetric Alkyne Addition: Synthesis of Chiral Propargylic Alcohols. Chemistry - A European Journal, 2012, 18, 16498-16509.	3.3	61
79	Iron(0) Particles: Catalytic Hydrogenations and Spectroscopic Studies. ChemCatChem, 2012, 4, 1088-1093.	3.7	58
80	Oxidative Nâ€Heterocyclic Carbene Catalysis. ChemCatChem, 2012, 4, 937-941.	3.7	143
81	Chlorostyrenes in Ironâ€Catalyzed Biaryl Coupling Reactions. Angewandte Chemie - International Edition, 2012, 51, 1357-1361.	13.8	78
82	Practical three-component synthesis of crowded arenes with donor–acceptor substitution. Organic and Biomolecular Chemistry, 2011, 9, 7224.	2.8	11
83	Ironâ€Catalyzed Reductive Aryl–Alkenyl Crossâ€Coupling Reactions. ChemCatChem, 2011, 3, 135-138.	3.7	74
84	Ironâ€Catalyzed Isomerizations of Olefins. ChemCatChem, 2011, 3, 1567-1571.	3.7	101
85	35 years of palladium-catalyzed cross-coupling with Grignard reagents: how far have we come?. Chemical Society Reviews, 2011, 40, 4948.	38.1	212
86	On the Dual Role of N-Heterocyclic Carbenes as Bases and Nucleophiles in Reactions with Organic Halides. Synthesis, 2011, 2011, 3784-3795.	2.3	15
87	The Aminohydroxylation of Alkenes Breaks New Ground. ChemCatChem, 2010, 2, 1381-1383.	3.7	17
88	On the Photophysical Properties of New Luminol Derivatives and their Synthetic Phthalimide Precursors. Journal of Fluorescence, 2010, 20, 657-664.	2.5	10
89	Practical Ironâ€Catalyzed Allylations of Aryl Grignard Reagents. Advanced Synthesis and Catalysis, 2010, 352, 2147-2152.	4.3	69
90	A Synthetic Double Punch: Suzuki–Miyaura Crossâ€Coupling Mates with CH Functionalization. Angewandte Chemie - International Edition, 2010, 49, 3568-3570.	13.8	47

#	Article	IF	CITATIONS
91	On direct iron-catalyzed cross-coupling reactions. Pure and Applied Chemistry, 2010, 82, 1545-1553.	1.9	52
92	Practical iron-catalyzed dehalogenation of aryl halides. Chemical Communications, 2010, 46, 6350.	4.1	107
93	On new N-heterocyclic carbene derived alkylidene imidazolines. Organic and Biomolecular Chemistry, 2010, 8, 1695.	2.8	79
94	Thieme Journal Awardees - Where Are They Now? On Cobalt-Catalyzed Biaryl Coupling Reactions. Synlett, 2009, 2009, 2919-2923.	1.8	5
95	Direct Cobalt-Catalyzed Cross-Coupling Between Aryl and Alkyl Halides. Synlett, 2009, 2009, 2931-2934.	1.8	23
96	Coming of Age: Sustainable Iron atalyzed Cross oupling Reactions. ChemSusChem, 2009, 2, 396-417.	6.8	536
97	Domino Iron Catalysis: Direct Aryl–Alkyl Crossâ€Coupling. Angewandte Chemie - International Edition, 2009, 48, 607-610.	13.8	241
98	Three-Component Reactions of \hat{l}_{\pm} - and \hat{l}^2 -Bromo Aldehydes with Amides and Dienophiles - An Easy Way to Versatile 1-Amido-2-Cyclohexenes. Synlett, 2007, 2007, 1085-1090.	1.8	1
99	Hydroxymethylpyridine Catalysts for the Enantioselective Alkynylation of Aldehydes. Synlett, 2007, 2007, 2574-2578.	1.8	2
100	On the quantitative recycling of Raney–Nickel catalysts on a lab-scale. Green Chemistry, 2007, 9, 1163.	9.0	40
101	Dinuclear Zn-Catalyzed Asymmetric Alkynylation of Unsaturated Aldehydes. Journal of the American Chemical Society, 2006, 128, 8-9.	13.7	244
102	Carbonylations of Aldehydes. , 2006, , 207-221.		11
103	An easy and general protocol for multicomponent coupling reactions of aldehydes, amides, and dienophiles. Tetrahedron, 2006, 62, 10962-10967.	1.9	17
104	Multicomponent Reaction of Aldehydes, Anhydrides, and Dienophiles: Synthesis of "Butterfly―Like Diazatetradecenes. European Journal of Organic Chemistry, 2005, 2005, 107-113.	2.4	17
105	The Amidocarbonylation of Aldehydes. ChemInform, 2005, 36, no.	0.0	O
106	Zinc-Mediated Reactions. ChemInform, 2005, 36, no.	0.0	O
107	Selective hydroalkoxycarbonylation of enamides to N-acyl amino acid esters: synthetic applications and theoretical studies. Journal of Organometallic Chemistry, 2004, 689, 3685-3700.	1.8	40
108	Second Generation Protocol for Multicomponent Coupling Reactions of Aldehydes, Amides and Dienophiles. Advanced Synthesis and Catalysis, 2004, 346, 970-978.	4.3	23

#	Article	IF	CITATIONS
109	Anilines Made Easily: From Aldehydes to Tri-, Tetra-, and Pentasubstituted Anilines in Two Steps ChemInform, 2004, 35, no.	0.0	O
110	Enzymatic Resolution of 4-N-Phenylacetylamino-Derivatives Obtained from Multicomponent Reactions Using PenG Amidase and in Silico Studies ChemInform, 2004, 35, no.	0.0	O
111	A New Efficient Synthesis of Substituted Luminols Using Multicomponent Reactions ChemInform, 2004, 35, no.	0.0	O
112	Enzymatic resolution of 4-N-phenylacetylamino-derivatives obtained from multicomponent reactions using PenG amidase and in silico studies. Tetrahedron, 2004, 60, 683-691.	1.9	18
113	From a spin-off to the advantageous use in Diels–Alder reactions: a combined synthetic, spectroscopic and computational approach to N-(dienyl)acylamines. Organic and Biomolecular Chemistry, 2004, 2, 845-851.	2.8	21
114	A New Efficient Synthesis of Substituted Luminols Using Multicomponent Reactions. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2004, 59, 431-438.	0.7	22
115	Synthesis of N-Acetyl-α-aminobutyric Acid via Amidocarbonylation: A Case Study. Advanced Synthesis and Catalysis, 2003, 345, 510-516.	4.3	29
116	Multicomponent Coupling Reactions for Organic Synthesis: Chemoselective Reactions with Amide—Aldehyde Mixures. ChemInform, 2003, 34, no.	0.0	0
117	Unusual Coupling Reactions of Aldehydes and Alkynes: A Novel Preparation of Substituted Phthalic Acid Derivatives by Automated Synthesis. Chemistry - A European Journal, 2003, 9, 2273-2281.	3.3	30
118	Multicomponent Coupling Reactions for Organic Synthesis: Chemoselective Reactions with Amide–Aldehyde Mixtures. Chemistry - A European Journal, 2003, 9, 4286-4294.	3.3	219
119	Anilines Made Easily: From Aldehydes to Tri-, Tetra-, and Pentasubstituted Anilines in Two Steps. Angewandte Chemie - International Edition, 2003, 42, 4503-4507.	13.8	44
120	Multi-component coupling reactions of aldehydes and amides with maleic anhydride: synthesis of 7-oxo-6-azabicyclo[3.2.1]oct-2-ene-8-carboxylic acids. Tetrahedron, 2002, 58, 2381-2387.	1.9	27
121	Facile Three-Component Coupling Procedure for the Synthesis of Substituted Tetrahydroisoindole-1,3-diones from \hat{l}_{\pm},\hat{l}^2 -Unsaturated Aldehydes. Organic Letters, 2001, 3, 2895-2898.	4.6	37
122	A New Multicomponent Coupling of Aldehydes, Amides, and Dienophiles:Â Atom-Efficient One-Pot Synthesis of Highly Substituted Cyclohexenes and Cyclohexadienes. Journal of the American Chemical Society, 2001, 123, 8398-8399.	13.7	68
123	The Amidocarbonylation of Aldehydes. , 0, , 133-148.		4
124	Zinc-Mediated Reactions. , 0, , 519-551.		2
125	Bismuth Reagents and Catalysts in Organic Synthesis. , 0, , 379-394.		1
126	BIANâ€Aluminium atalyzed Imine Hydrogenation. ChemCatChem, 0, , .	3.7	2