
Deepak Almeida

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11784059/publications.pdf Version: 2024-02-01

DEEDAK ALMEIDA

#	Article	IF	CITATIONS
1	An Adaptive Biosystems Engineering Approach towards Modeling the Soluble-to-Insoluble Phase Transition of Clofazimine. Pharmaceutics, 2022, 14, 17.	4.5	4
2	Quantitative Analysis of the Phase Transition Mechanism Underpinning the Systemic Self-Assembly of a Mechanopharmaceutical Device. Pharmaceutics, 2022, 14, 15.	4.5	4
3	Comparative Efficacy of the Novel Diarylquinoline TBAJ-876 and Bedaquiline against a Resistant <i>Rv0678</i> Mutant in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2021, 65, e0141221.	3.2	16
4	Predicting nitroimidazole antibiotic resistance mutations in Mycobacterium tuberculosis with protein engineering. FASEB Journal, 2020, 34, 1-1.	0.5	0
5	High-Dose Rifamycins Enable Shorter Oral Treatment in a Murine Model of Mycobacterium ulcerans Disease. Antimicrobial Agents and Chemotherapy, 2019, 63, .	3.2	15
6	Mutations in <i>pepQ</i> Confer Low-Level Resistance to Bedaquiline and Clofazimine in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2016, 60, 4590-4599.	3.2	165
7	Direct Susceptibility Testing of Mycobacterium tuberculosis for Pyrazinamide by Use of the Bactec MGIT 960 System. Journal of Clinical Microbiology, 2016, 54, 1276-1281.	3.9	16
8	Biomarkers for Tuberculosis Based on Secreted, Species-Specific, Bacterial Small Molecules. Journal of Infectious Diseases, 2015, 212, 1827-1834.	4.0	20
9	Modeling early bactericidal activity in murine tuberculosis provides insights into the activity of isoniazid and pyrazinamide. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15001-15005.	7.1	33
10	Dose-Ranging Comparison of Rifampin and Rifapentine in Two Pathologically Distinct Murine Models of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2012, 56, 4331-4340.	3.2	142
11	Activity of 5-chloro-pyrazinamide in mice infected with Mycobacterium tuberculosis or Mycobacterium bovis. Indian Journal of Medical Research, 2012, 136, 808-14.	1.0	8
12	Activities of Rifampin, Rifapentine and Clarithromycin Alone and in Combination against Mycobacterium ulcerans Disease in Mice. PLoS Neglected Tropical Diseases, 2011, 5, e933.	3.0	40
13	Paradoxical Effect of Isoniazid on the Activity of Rifampin-Pyrazinamide Combination in a Mouse Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2009, 53, 4178-4184.	3.2	90
14	Powerful Bactericidal and Sterilizing Activity of a Regimen Containing PA-824, Moxifloxacin, and Pyrazinamide in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2008, 52, 1522-1524.	3.2	203
15	Isoniazid or Moxifloxacin in Rifapentine-based Regimens for Experimental Tuberculosis?. American Journal of Respiratory and Critical Care Medicine, 2008, 178, 989-993.	5.6	61
16	Combination Chemotherapy with the Nitroimidazopyran PA-824 and First-Line Drugs in a Murine Model of Tuberculosis. Antimicrobial Agents and Chemotherapy, 2006, 50, 2621-2625.	3.2	117
17	High Incidence of the Beijing Genotype among Multidrug-Resistant Isolates of Mycobacterium tuberculosis in a Tertiary Care Center in Mumbai, India. Clinical Infectious Diseases, 2005, 40, 881-886.	5.8	72
18	Incidence of Multidrug-Resistant Tuberculosis in Urban and Rural India and Implications for Prevention. Clinical Infectious Diseases, 2003, 36, e152-e154.	5.8	81