Erin Shammel Baker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/117833/publications.pdf Version: 2024-02-01

FRIN SHAMMEL RAKER

#	Article	IF	CITATIONS
1	An Interlaboratory Evaluation of Drift Tube Ion Mobility–Mass Spectrometry Collision Cross Section Measurements. Analytical Chemistry, 2017, 89, 9048-9055.	3.2	361
2	Mass spectrometry-based proteomics: existing capabilities and future directions. Chemical Society Reviews, 2012, 41, 3912.	18.7	351
3	G-Quadruplex DNA Assemblies: Loop Length, Cation Identity, and Multimer Formation. Journal of the American Chemical Society, 2008, 130, 10208-10216.	6.6	246
4	Ion Mobility Spectrometry: Fundamental Concepts, Instrumentation, Applications, and the Road Ahead. Journal of the American Society for Mass Spectrometry, 2019, 30, 2185-2195.	1.2	244
5	Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst, The, 2016, 141, 1649-1659.	1.7	196
6	Serpentine Ultralong Path with Extended Routing (SUPER) High Resolution Traveling Wave Ion Mobility-MS using Structures for Lossless Ion Manipulations. Analytical Chemistry, 2017, 89, 4628-4634.	3.2	162
7	A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chemical Science, 2017, 8, 7724-7736.	3.7	156
8	Stabilization and Structure of Telomeric and c-myc Region Intramolecular G-Quadruplexes:Â The Role of Central Cations and Small Planar Ligands. Journal of the American Chemical Society, 2007, 129, 895-904.	6.6	143
9	Ultra-High Resolution Ion Mobility Separations Utilizing Traveling Waves in a 13 m Serpentine Path Length Structures for Lossless Ion Manipulations Module. Analytical Chemistry, 2016, 88, 8957-8964.	3.2	136
10	Ion mobility spectrometry—mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures. Journal of the American Society for Mass Spectrometry, 2007, 18, 1176-1187.	1.2	128
11	Predicting Ion Mobility Collision Cross-Sections Using a Deep Neural Network: DeepCCS. Analytical Chemistry, 2019, 91, 5191-5199.	3.2	121
12	An LC-IMS-MS Platform Providing Increased Dynamic Range for High-Throughput Proteomic Studies. Journal of Proteome Research, 2010, 9, 997-1006.	1.8	120
13	Duplex Formation and the Onset of Helicity in Poly d(CG)nOligonucleotides in a Solvent-Free Environment. Journal of the American Chemical Society, 2004, 126, 15132-15140.	6.6	119
14	Online Ozonolysis Combined with Ion Mobility-Mass Spectrometry Provides a New Platform for Lipid Isomer Analyses. Analytical Chemistry, 2018, 90, 1292-1300.	3.2	114
15	A multi-omic future for microbiome studies. Nature Microbiology, 2016, 1, 16049.	5.9	112
16	Structural motifs of DNA complexes in the gas phase. International Journal of Mass Spectrometry, 2005, 240, 183-193.	0.7	101
17	New frontiers for mass spectrometry based upon structures for lossless ion manipulations. Analyst, The, 2017, 142, 1010-1021.	1.7	95
18	Development of a new ion mobility time-of-flight mass spectrometer. International Journal of Mass Spectrometry, 2015, 377, 655-662.	0.7	92

#	Article	IF	CITATIONS
19	Ion Mobility Separations of Isomers based upon Long Path Length Structures for Lossless Ion Manipulations Combined with Mass Spectrometry. ChemistrySelect, 2016, 1, 2396-2399.	0.7	92
20	Optimization of Algorithms for Ion Mobility Calculations. Journal of Physical Chemistry A, 2007, 111, 2002-2010.	1.1	91
21	Cyclo[n]pyrroles:Â Size and Site-Specific Binding to G-Quadruplexes. Journal of the American Chemical Society, 2006, 128, 2641-2648.	6.6	86
22	Lipid and Glycolipid Isomer Analyses Using Ultra-High Resolution Ion Mobility Spectrometry Separations. International Journal of Molecular Sciences, 2017, 18, 183.	1.8	86
23	Recommendations for good practice in MS-based lipidomics. Journal of Lipid Research, 2021, 62, 100138.	2.0	85
24	Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional Biological and Environmental Analyses. Annual Review of Analytical Chemistry, 2017, 10, 71-92.	2.8	84
25	PNA/dsDNA Complexes:Â Site Specific Binding and dsDNA Biosensor Applications. Journal of the American Chemical Society, 2006, 128, 8484-8492.	6.6	82
26	G-quadruplexes in telomeric repeats are conserved in a solvent-free environment. International Journal of Mass Spectrometry, 2006, 253, 225-237.	0.7	80
27	Enhancing glycan isomer separations with metal ions and positive and negative polarity ion mobility spectrometry-mass spectrometry analyses. Analytical and Bioanalytical Chemistry, 2017, 409, 467-476.	1.9	78
28	Microstructural and conformational studies of polyether copolymers. International Journal of Mass Spectrometry, 2004, 238, 287-297.	0.7	71
29	Mass spectrometry for translational proteomics: progress and clinical implications. Genome Medicine, 2012, 4, 63.	3.6	71
30	Ion mobility spectrometry and the omics: Distinguishing isomers, molecular classes and contaminant ions in complex samples. TrAC - Trends in Analytical Chemistry, 2019, 116, 292-299.	5.8	71
31	Rapid Characterization of Per- and Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry–Mass Spectrometry (IMS-MS). Analytical Chemistry, 2020, 92, 4427-4435.	3.2	71
32	Unraveling the isomeric heterogeneity of glycans: ion mobility separations in structures for lossless ion manipulations. Chemical Communications, 2018, 54, 11701-11704.	2.2	68
33	Integrating ion mobility spectrometry into mass spectrometry-based exposome measurements: what can it go?. Bioanalysis, 2017, 9, 81-98.	0.6	66
34	Recent advances in lipid separations and structural elucidation using mass spectrometry combined with ion mobility spectrometry, ion-molecule reactions and fragmentation approaches. Current Opinion in Chemical Biology, 2018, 42, 111-118.	2.8	64
35	Structural characterization of G-quadruplexes in deoxyguanosine clusters using ion mobility mass spectrometry. Journal of the American Society for Mass Spectrometry, 2005, 16, 989-997.	1.2	63
36	SPE-IMS-MS: An automated platform for sub-sixty second surveillance of endogenous metabolites and xenobiotics in biofluids. Clinical Mass Spectrometry, 2016, 2, 1-10.	1.9	63

#	Article	IF	CITATIONS
37	The past, present and future of microbiome analyses. Nature Protocols, 2016, 11, 2049-2053.	5.5	59
38	Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. Analytica Chimica Acta, 2018, 1037, 265-273.	2.6	59
39	Distinguishing <scp>d</scp> - and <scp>l</scp> -aspartic and isoaspartic acids in amyloid β peptides with ultrahigh resolution ion mobility spectrometry. Chemical Communications, 2017, 53, 7913-7916.	2.2	56
40	Comparing residential contamination in a Houston environmental justice neighborhood before and after Hurricane Harvey. PLoS ONE, 2018, 13, e0192660.	1.1	56
41	Using Skyline to Analyze Data-Containing Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry Dimensions. Journal of the American Society for Mass Spectrometry, 2018, 29, 2182-2188.	1.2	55
42	Challenges in Identifying the Dark Molecules of Life. Annual Review of Analytical Chemistry, 2019, 12, 177-199.	2.8	55
43	Enhancing bottomâ€up and topâ€down proteomic measurements with ion mobility separations. Proteomics, 2015, 15, 2766-2776.	1.3	54
44	Development of an Ion Mobility Spectrometry-Orbitrap Mass Spectrometer Platform. Analytical Chemistry, 2016, 88, 12152-12160.	3.2	54
45	B-DNA Helix Stability in a Solvent-Free Environment. Journal of the American Society for Mass Spectrometry, 2007, 18, 1188-1195.	1.2	53
46	Biases in ion transmission through an electrospray ionization-mass spectrometry capillary inlet. Journal of the American Society for Mass Spectrometry, 2009, 20, 2265-2272.	1.2	52
47	Achieving High Resolution Ion Mobility Separations Using Traveling Waves in Compact Multiturn Structures for Lossless Ion Manipulations. Analytical Chemistry, 2016, 88, 8949-8956.	3.2	52
48	Profiling microbial lignocellulose degradation and utilization by emergent omics technologies. Critical Reviews in Biotechnology, 2017, 37, 626-640.	5.1	52
49	Advancing the High Throughput Identification of Liver Fibrosis Protein Signatures Using Multiplexed Ion Mobility Spectrometry. Molecular and Cellular Proteomics, 2014, 13, 1119-1127.	2.5	51
50	Ion Trapping, Storage, and Ejection in Structures for Lossless Ion Manipulations. Analytical Chemistry, 2015, 87, 6010-6016.	3.2	48
51	Application of ion mobility to the gas-phase conformational analysis of polyhedral oligomeric silsesquioxanes (POSS). International Journal of Mass Spectrometry, 2003, 222, 63-73.	0.7	47
52	Isomeric Structural Characterization of Polyhedral Oligomeric Silsesquioxanes (POSS) with Styryl and Epoxy Phenyl Capping Agents. Nano Letters, 2004, 4, 779-785.	4.5	45
53	A multi-pronged search for a common structural motif in the secretion signal of Salmonella enterica serovar Typhimurium type III effector proteins. Molecular BioSystems, 2010, 6, 2448.	2.9	45
54	Structural Elucidation of <i>cis</i> / <i>trans</i> Dicaffeoylquinic Acid Photoisomerization Using Ion Mobility Spectrometry-Mass Spectrometry. Journal of Physical Chemistry Letters, 2017, 8, 1381-1388.	2.1	45

#	Article	IF	CITATIONS
55	Rapid Ion Mobility Separations of Bile Acid Isomers Using Cyclodextrin Adducts and Structures for Lossless Ion Manipulations. Analytical Chemistry, 2018, 90, 11086-11091.	3.2	44
56	A Preprocessing Tool for Enhanced Ion Mobility–Mass Spectrometry-Based Omics Workflows. Journal of Proteome Research, 2022, 21, 798-807.	1.8	44
57	Simultaneous fragmentation of multiple ions using IMS drift time dependent collision energies. Journal of the American Society for Mass Spectrometry, 2008, 19, 411-419.	1.2	43
58	Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements. Journal of the American Society for Mass Spectrometry, 2014, 25, 2020-2027.	1.2	42
59	Compression Ratio Ion Mobility Programming (CRIMP) Accumulation and Compression of Billions of Ions for Ion Mobility-Mass Spectrometry Using Traveling Waves in Structures for Lossless Ion Manipulations (SLIM). Analytical Chemistry, 2017, 89, 6432-6439.	3.2	42
60	High-resolution separations and improved ion production and transmission in metabolomics. TrAC - Trends in Analytical Chemistry, 2008, 27, 205-214.	5.8	41
61	Mobility-Selected Ion Trapping and Enrichment Using Structures for Lossless Ion Manipulations. Analytical Chemistry, 2016, 88, 1728-1733.	3.2	41
62	lon manipulations in structures for lossless ion manipulations (SLIM): computational evaluation of a 90° turn and a switch. Analyst, The, 2015, 140, 6845-6852.	1.7	40
63	Improved Sensitivity and Separations for Phosphopeptides using Online Liquid Chromotography Coupled with Structures for Lossless Ion Manipulations Ion Mobility–Mass Spectrometry. Analytical Chemistry, 2018, 90, 10889-10896.	3.2	38
64	3-Dimensional structural characterization of cationized polyhedral oligomeric silsesquioxanes (POSS) with styryl and phenylethyl capping agents. International Journal of Mass Spectrometry, 2003, 227, 205-216.	0.7	37
65	DNA Hairpin, Pseudoknot, and Cruciform Stability in a Solvent-Free Environment. Journal of Physical Chemistry B, 2009, 113, 1722-1727.	1.2	37
66	Machine learning based prediction for peptide drift times in ion mobility spectrometry. Bioinformatics, 2010, 26, 1601-1607.	1.8	37
67	Squeezing of Ion Populations and Peaks in Traveling Wave Ion Mobility Separations and Structures for Lossless Ion Manipulations Using Compression Ratio Ion Mobility Programming. Analytical Chemistry, 2016, 88, 11877-11885.	3.2	37
68	The fungal cultivar of leafâ€cutter ants produces specific enzymes in response to different plant substrates. Molecular Ecology, 2016, 25, 5795-5805.	2.0	37
69	Distinguishing enantiomeric amino acids with chiral cyclodextrin adducts and structures for lossless ion manipulations. Electrophoresis, 2018, 39, 3148-3155.	1.3	35
70	Rapid Characterization of Emerging Per- and Polyfluoroalkyl Substances in Aqueous Film-Forming Foams Using Ion Mobility Spectrometry–Mass Spectrometry. Environmental Science & Technology, 2020, 54, 15024-15034.	4.6	35
71	Uncovering PFAS and Other Xenobiotics in the Dark Metabolome Using Ion Mobility Spectrometry, Mass Defect Analysis, and Machine Learning. Environmental Science & Technology, 2022, 56, 9133-9143.	4.6	34
72	Structure of Hybrid Polyhedral Oligomeric Silsesquioxane Propyl Methacrylate Oligomers Using Ion Mobility Mass Spectrometry and Molecular Mechanics. Chemistry of Materials, 2005, 17, 2537-2545.	3.2	33

#	Article	IF	CITATIONS
73	Uterine Deletion of Trp53 Compromises Antioxidant Responses in the Mouse Decidua. Endocrinology, 2012, 153, 4568-4579.	1.4	32
74	LC-IMS-MS Feature Finder: detecting multidimensional liquid chromatography, ion mobility and mass spectrometry features in complex datasets. Bioinformatics, 2013, 29, 2804-2805.	1.8	32
75	Ligand induced structural isomerism in phosphine coordinated gold clusters revealed by ion mobility mass spectrometry. Chemical Communications, 2017, 53, 7389-7392.	2.2	31
76	Comparing identified and statistically significant lipids and polar metabolites in 15â€year old serum and dried blood spot samples for longitudinal studies. Rapid Communications in Mass Spectrometry, 2017, 31, 447-456.	0.7	31
77	Towards Discovery and Targeted Peptide Biomarker Detection Using nanoESI-TIMS-TOF MS. Journal of the American Society for Mass Spectrometry, 2018, 29, 817-826.	1.2	31
78	Cell type-resolved human lung lipidome reveals cellular cooperation in lung function. Scientific Reports, 2018, 8, 13455.	1.6	31
79	Characterization of an ion mobility-multiplexed collision-induced dissociation-tandem time-of-flight mass spectrometry approach. International Journal of Mass Spectrometry, 2010, 293, 34-44.	0.7	30
80	Identification of Hip BMD Loss and Fracture Risk Markers Through Population-Based Serum Proteomics. Journal of Bone and Mineral Research, 2017, 32, 1559-1567.	3.1	30
81	Simultaneous Proteomic Discovery and Targeted Monitoring using Liquid Chromatography, Ion Mobility Spectrometry, and Mass Spectrometry. Molecular and Cellular Proteomics, 2016, 15, 3694-3705.	2.5	29
82	Increasing confidence of LC–MS identifications by utilizing ion mobility spectrometry. International Journal of Mass Spectrometry, 2013, 354-355, 312-317.	0.7	27
83	Evaluation of <scp>SDS</scp> depletion using an affinity spin column and <scp>IMS</scp> â€ <scp>MS</scp> detection. Proteomics, 2012, 12, 3138-3142.	1.3	26
84	Utilizing Pine Needles to Temporally and Spatially Profile Per- and Polyfluoroalkyl Substances (PFAS). Environmental Science & Technology, 2022, 56, 3441-3451.	4.6	26
85	Greatly Increasing Trapped Ion Populations for Mobility Separations Using Traveling Waves in Structures for Lossless Ion Manipulations. Analytical Chemistry, 2016, 88, 10143-10150.	3.2	25
86	An algorithm to correct saturated mass spectrometry ion abundances for enhanced quantitation and mass accuracy in omic studies. International Journal of Mass Spectrometry, 2018, 427, 91-99.	0.7	25
87	Mixed-Isotope Labeling with LC-IMS-MS for Characterization of Protein–Protein Interactions by Chemical Cross-Linking. Journal of the American Society for Mass Spectrometry, 2013, 24, 444-449.	1.2	24
88	Sodium stabilization of dinucleotide multiplexes in the gas phase. Physical Chemistry Chemical Physics, 2004, 6, 2786.	1.3	23
89	Probing Shapes of Bichromophoric Metalâ^'Organic Complexes Using Ion Mobility Mass Spectrometry. Journal of the American Chemical Society, 2005, 127, 18222-18228.	6.6	23
90	Temporal and spatial analysis of per and polyfluoroalkyl substances in surface waters of Houston ship channel following a large-scale industrial fire incident. Environmental Pollution, 2020, 265, 115009.	3.7	23

#	Article	IF	CITATIONS
91	Utilizing Skyline to analyze lipidomics data containing liquid chromatography, ion mobility spectrometry and mass spectrometry dimensions. Nature Protocols, 2022, 17, 2415-2430.	5.5	23
92	Evaluating lipid mediator structural complexity using ion mobility spectrometry combined with mass spectrometry. Bioanalysis, 2018, 10, 279-289.	0.6	22
93	Coupling IR-MALDESI with Drift Tube Ion Mobility-Mass Spectrometry for High-Throughput Screening and Imaging Applications. Journal of the American Society for Mass Spectrometry, 2020, 31, 642-650.	1.2	22
94	Structural Analysis of Metal Interactions with the Dinucleotide Duplex, dCG·dCG, Using Ion Mobility Mass Spectrometry. Journal of Physical Chemistry B, 2005, 109, 4808-4810.	1.2	21
95	Improving Ion Mobility Measurement Sensitivity by Utilizing Helium in an Ion Funnel Trap. Analytical Chemistry, 2014, 86, 5295-5299.	3.2	21
96	From Pesticides to Per- and Polyfluoroalkyl Substances: An Evaluation of Recent Targeted and Untargeted Mass Spectrometry Methods for Xenobiotics. Analytical Chemistry, 2021, 93, 641-656.	3.2	21
97	Improving the Speed and Selectivity of Newborn Screening Using Ion Mobility Spectrometry–Mass Spectrometry. Analytical Chemistry, 2021, 93, 17094-17102.	3.2	21
98	Redox states of Desulfovibrio vulgaris DsrC, a key protein in dissimilatory sulfite reduction. Biochemical and Biophysical Research Communications, 2013, 441, 732-736.	1.0	20
99	Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging. Placenta, 2017, 60, S67-S72.	0.7	20
100	Application of multiplexed ion mobility spectrometry towards the identification of host protein signatures of treatment effect in pulmonary tuberculosis. Tuberculosis, 2018, 112, 52-61.	0.8	20
101	Highâ€ŧhroughput serum proteomics for the identification of protein biomarkers of mortality in older men. Aging Cell, 2018, 17, e12717.	3.0	19
102	The MPLEx Protocol for Multi-omic Analyses of Soil Samples. Journal of Visualized Experiments, 2018, ,	0.2	19
103	Diastereomer Assignment of an Olefin-Linked Bis-paracyclophane by Ion Mobility Mass Spectrometry. Journal of the American Chemical Society, 2004, 126, 6255-6257.	6.6	18
104	Muscle Segment Homeobox Genes Direct Embryonic Diapause by Limiting Inflammation in the Uterus*. Journal of Biological Chemistry, 2015, 290, 15337-15349.	1.6	18
105	Folding and Assembly of Short α, β, γ-Hybrid Peptides: Minor Variations in Sequence and Drastic Differences in Higher-Level Structures. Journal of the American Chemical Society, 2019, 141, 14239-14248.	6.6	18
106	Multiomic Big Data Analysis Challenges: Increasing Confidence in the Interpretation of Artificial Intelligence Assessments. Analytical Chemistry, 2021, 93, 7763-7773.	3.2	18
107	Development and Application of Multidimensional Lipid Libraries to Investigate Lipidomic Dysregulation Related to Smoke Inhalation Injury Severity. Journal of Proteome Research, 2022, 21, 232-242.	1.8	18
108	A Structures for Lossless Ion Manipulations (SLIM) Module for Collision Induced Dissociation. Journal of the American Society for Mass Spectrometry, 2016, 27, 1285-1288.	1.2	16

#	Article	IF	CITATIONS
109	Perspectives on Data Analysis in Metabolomics: Points of Agreement and Disagreement from the 2018 ASMS Fall Workshop. Journal of the American Society for Mass Spectrometry, 2019, 30, 2031-2036.	1.2	16
110	Evaluating the structural complexity of isomeric bile acids with ion mobility spectrometry. Analytical and Bioanalytical Chemistry, 2019, 411, 4673-4682.	1.9	16
111	Structural-based connectivity and omic phenotype evaluations (SCOPE): a cheminformatics toolbox for investigating lipidomic changes in complex systems. Analyst, The, 2020, 145, 7197-7209.	1.7	16
112	Unveiling molecular signatures of preeclampsia and gestational diabetes mellitus with multi-omics and innovative cheminformatics visualization tools. Molecular Omics, 2020, 16, 521-532.	1.4	16
113	Analysis of per- and polyfluoroalkyl substances in Houston Ship Channel and Galveston Bay following a large-scale industrial fire using ion-mobility-spectrometry-mass spectrometry. Journal of Environmental Sciences, 2022, 115, 350-362.	3.2	16
114	Ion Mobility-Mass Spectrometry in Metabolomic, Lipidomic, and Proteomic Analyses. Comprehensive Analytical Chemistry, 2019, , 123-159.	0.7	15
115	Enhancing biological analyses with three dimensional field asymmetric ion mobility, low field drift tube ion mobility and mass spectrometry (μFAIMS/IMS-MS) separations. Analyst, The, 2015, 140, 6955-6963.	1.7	14
116	Mass spectrometry-based monitoring of millisecond protein–ligand binding dynamics using an automated microfluidic platform. Lab on A Chip, 2016, 16, 1544-1548.	3.1	14
117	Sequence dependent conformations of glycidyl methacrylate/butyl methacrylate copolymers in the gas phase. International Journal of Mass Spectrometry, 2004, 238, 279-286.	0.7	13
118	Spatial Ion Peak Compression and its Utility in Ion Mobility Spectrometry. Journal of the American Society for Mass Spectrometry, 2016, 27, 1128-1135.	1.2	13
119	Proteomic assessment of serum biomarkers of longevity in older men. Aging Cell, 2020, 19, e13253.	3.0	12
120	Per- and polyfluoroalkyl substances (PFAS)—contaminants of emerging concern. Analytical and Bioanalytical Chemistry, 2022, 414, 1187-1188.	1.9	12
121	High-Resolution Demultiplexing (HRdm) Ion Mobility Spectrometry–Mass Spectrometry for Aspartic and Isoaspartic Acid Determination and Screening. Analytical Chemistry, 2022, 94, 6191-6199.	3.2	12
122	A Customizable Flow Injection System for Automated, High Throughput, and Time Sensitive Ion Mobility Spectrometry and Mass Spectrometry Measurements. Analytical Chemistry, 2018, 90, 737-744.	3.2	11
123	Enhanced protocol for quantitative N-linked glycomics analysis using Individuality Normalization when Labeling with Isotopic Glycan Hydrazide Tags (INLIGHT)â,,¢. Analytical and Bioanalytical Chemistry, 2020, 412, 7569-7579.	1.9	11
124	A Comparative Analysis of Analytical Techniques for Rapid Oil Spill Identification. Environmental Toxicology and Chemistry, 2021, 40, 1034-1049.	2.2	11
125	Ion Mobility Spectrometry Characterization of the Intermediate Hydrogen-Containing Gold Cluster Au ₇ (PPh ₃) ₇ H ₅ ²⁺ . Journal of Physical Chemistry Letters, 2021, 12, 2502-2508.	2.1	11
126	From Plants to Ants: Fungal Modification of Leaf Lipids for Nutrition and Communication in the Leaf-Cutter Ant Fungal Garden Ecosystem. MSystems, 2021, 6, .	1.7	11

#	Article	IF	CITATIONS
127	PIXiE: an algorithm for automated ion mobility arrival time extraction and collision cross section calculation using global data association. Bioinformatics, 2017, 33, 2715-2722.	1.8	10
128	Utilizing Ion Mobility-Mass Spectrometry to Investigate the Unfolding Pathway of Cu/Zn Superoxide Dismutase. Frontiers in Chemistry, 2021, 9, 614595.	1.8	10
129	Utilizing Drift Tube Ion Mobility Spectrometry for the Evaluation of Metabolites and Xenobiotics. Methods in Molecular Biology, 2020, 2084, 35-54.	0.4	10
130	Combining Micropunch Histology and Multidimensional Lipidomic Measurements for In-Depth Tissue Mapping. ACS Measurement Science Au, 2022, 2, 67-75.	1.9	10
131	Data Processing Workflow to Identify Structurally Related Compounds in Petroleum Substances Using Ion Mobility Spectrometry–Mass Spectrometry. Energy & Fuels, 2021, 35, 10529-10539.	2.5	9
132	Utilizing ion mobility spectrometry-mass spectrometry for the characterization and detection of persistent organic pollutants and their metabolites. Analytical and Bioanalytical Chemistry, 2022, 414, 1245-1258.	1.9	9
133	Relationships between constituents of energy drinks and beating parameters in human induced pluripotent stem cell (iPSC)-Derived cardiomyocytes. Food and Chemical Toxicology, 2021, 149, 111979.	1.8	8
134	In situ imaging reveals disparity between prostaglandin localization and abundance of prostaglandin synthases. Communications Biology, 2021, 4, 966.	2.0	8
135	From Prevention to Disease Perturbations: A Multi-Omic Assessment of Exercise and Myocardial Infarctions. Biomolecules, 2021, 11, 40.	1.8	8
136	Characterization of compositional variability in petroleum substances. Fuel, 2022, 317, 123547.	3.4	8
137	Surface Modified Nano-Electrospray Needles Improve Sensitivity for Native Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2022, 33, 1031-1037.	1.2	8
138	Utilizing liquid chromatography, ion mobility spectrometry, and mass spectrometry to assess INLIGHTâ,,¢ derivatized N-linked glycans in biological samples. Analytical and Bioanalytical Chemistry, 2022, 414, 623-637.	1.9	6
139	A Histoplasma capsulatum Lipid Metabolic Map Identifies Antifungal Targets. MBio, 2021, 12, e0297221.	1.8	6
140	Combining Isotopologue Workflows and Simultaneous Multidimensional Separations to Detect, Identify, and Validate Metabolites in Untargeted Analyses. Analytical Chemistry, 2022, 94, 2527-2535.	3.2	6
141	Spatial Distribution of Polycyclic Aromatic Hydrocarbon Contaminants after Hurricane Harvey in a Houston Neighborhood. Journal of Health and Pollution, 2021, 11, 210308.	1.8	5
142	Aminoglycoside antibiotics: A-site specific binding to 16S. International Journal of Mass Spectrometry, 2009, 283, 105-111.	0.7	4
143	Cupric Ions Selectively Modulate TRAAK–Phosphatidylserine Interactions. Journal of the American Chemical Society, 2022, 144, 7048-7053.	6.6	4
144	Surprising impact of remote groups on the folding–unfolding and dimer-chain equilibria of bifunctional H-bonding unimers. Chemical Communications, 2016, 52, 3773-3776.	2.2	3

#	Article	IF	CITATIONS
145	Conventional and Advanced Separations in Mass Spectrometry-Based Metabolomics: Methodologies and Applications. , 2017, , 376-384.		2
146	Editorial overview: Omics. Current Opinion in Chemical Biology, 2018, 42, A1-A2.	2.8	2
147	New Developments in LC-MS and Other Hyphenated Techniques. , 2011, , 981-1030.		1
148	Mass Spectrometry for Biomarker Development. Biomarkers in Disease, 2015, , 17-48.	0.0	1
149	Empowering women and addressing underrepresentation in the field of mass spectrometry. Expert Review of Proteomics, 2022, 19, 1-3.	1.3	1
150	Focus on Advancing High Performance Mass Spectrometry, Honoring Dr. Richard D. Smith, Recipient of the 2013 Award for a Distinguished Contribution in Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2014, 25, 1997-1999.	1.2	0
151	Guest editor's personal foreward. International Journal of Mass Spectrometry, 2018, 427, 1-3.	0.7	0
152	Mass Spectrometry for Biomarker Development. , 2014, , 1-25.		0