Yi Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1178175/publications.pdf

Version: 2024-02-01

		159585	123424
68	3,844 citations	30	61
papers	citations	h-index	g-index
68	68	68	4520
all docs	docs citations	times ranked	citing authors

#	ARTICLE Elist-principles study of two-dimensional MoN2X2Y2 (X=B <mml:math) 0.784314="" 1="" 10="" etqq1="" overlock="" rgbt="" t<="" th="" tj=""><th>f 50 762 T</th><th>CITATIONS</th></mml:math)>	f 50 762 T	CITATIONS
1		6.1	9
2	First-principles study of bilayer hexagonal structure of SN ₂ nanosheet: a highly stable non-metal platform for the quantum anomalous Hall effect. Journal of Materials Chemistry C, 2021, 9, 5961-5969.	5 . 5	4
3	Computational Exploration of Stable 4d/5d Transition-Metal MSi $<$ sub $>$ 2 $<$ /sub $>$ N $<$ sub $>$ 4 $<$ /sub $>$ (M =) Tj ETQq1 1 Physical Chemistry C, 2021, 125, 19580-19591.	0.784314 3.1	rgBT /Ove <mark>rlo</mark> 25
4	Switchable valley polarization and quantum anomalous Hall state in the VN2X2Y2 nanosheets (X = group-III and Y = group-VI elements). Applied Physics Letters, 2021, 119, .	3.3	22
5	Intrinsic ferromagnetism and valley polarization in hydrogenated group V transition-metal dinitride (MN $<$ sub $>2<$ sub $>H<$ sub $>2<$ sub $>$, M = V/Nb/Ta) nanosheets: insights from first-principles. Nanoscale, 2020, 12, 1002-1012.	5.6	17
6	Stable puckered C ₂ N ₂ nanosheet with giant anisotropic hole carrier mobility: insights from first-principles. Journal of Materials Chemistry C, 2020, 8, 15655-15663.	5.5	4
7	Large-Gap Quantum Spin Hall States in the Bilayer Hexagonal Structure of Rhenium and Technetium Dinitrides: A First-Principles Study. Journal of Physical Chemistry C, 2019, 123, 25524-25530.	3.1	6
8	Stabilizing the isolated Sn2Bi nanosheet and tailoring its electronic structure by chemical functionalization: A computational study. Applied Physics Letters, 2019, 114 , .	3.3	8
9	Tunable electronic and magnetic properties of graphene-like XYBe ₃ (XY = BN, AlN, SiC, GeC) nanosheets with carrier doping: a first-principles study. Physical Chemistry Chemical Physics, 2018, 20, 6830-6837.	2.8	9
10	A first-principles study of a real energetically stable MoN ₂ nanosheet and its tunable electronic structure. Journal of Materials Chemistry C, 2018, 6, 2245-2251.	5.5	23
11	Tunable Electronic Structures of Hydrogenated Zigzag and Armchair Dumbbell Silicene Nanosheets: A Computational Study. Journal of Physical Chemistry C, 2018, 122, 23208-23216.	3.1	9
12	Uncovering a Stable Phase in Group V Transition-metal Dinitride (MN $<$ sub $>2<$ /sub $>$, M = Ta, Nb, V) Nanosheets and Their Electronic Properties via First-principles Investigations. Journal of Physical Chemistry C, 2018, 122, 26748-26755.	3.1	32
13	Stable H-Terminated Edges, Variable Semiconducting Properties, and Solar Cell Applications of C ₃ N Nanoribbons: A First-Principles Study. ACS Omega, 2018, 3, 8777-8786.	3.5	9
14	Structural stability and the electronic properties of a (SiH) ₂ O-formed siloxene sheet: a computational study. Physical Chemistry Chemical Physics, 2017, 19, 18030-18035.	2.8	7
15	Lattice thermal conductivities and thermoelectric performances of binary tin-based sheets: A computational study. Applied Surface Science, 2017, 396, 1164-1169.	6.1	6
16	Surface functionalization of molybdenum dinitride nanosheets by halogen and alkali atoms: a first-principles study. Journal of Materials Chemistry C, 2017, 5, 683-689.	5.5	10
17	Intrinsic magnetism and electronic structure of graphene-like Be ₃ C ₂ nanoribbons and their Si, Ge analogues: a computational study. Journal of Materials Chemistry C, 2017, 5, 10728-10736.	5.5	11
18	Electronic structure and topological features of tin-based binary nanosheets and their hydrogenated/fluorinated derivatives: A first-principles study. Applied Surface Science, 2016, 382, 1-9.	6.1	9

#	Article	IF	Citations
19	Highly active, stable and self-antimicrobial enzyme catalysts prepared by biomimetic mineralization of copper hydroxysulfate. Nanoscale, 2016, 8, 17440-17445.	5.6	60
20	Tunable electronic structures of germanium monochalcogenide nanosheets via light non-metallic atom functionalization: a first-principles study. Physical Chemistry Chemical Physics, 2016, 18, 23080-23088.	2.8	18
21	The hydrogen-induced structural stability and promising electronic properties of molybdenum and tungsten dinitride nanosheets: a first-principles study. Journal of Materials Chemistry C, 2016, 4, 7485-7493.	5 . 5	35
22	An enzyme–copper nanoparticle hybrid catalyst prepared from disassembly of an enzyme–inorganic nanocrystal three-dimensional nanostructure. RSC Advances, 2016, 6, 20772-20776.	3.6	36
23	Enhanced piezoelectricity and half-metallicity of fluorinated AlN nanosheets and nanoribbons: a first-principles study. Journal of Materials Chemistry C, 2016, 4, 1517-1526.	5.5	19
24	Unexpected buckled structures and tunable electronic properties in arsenic nanosheets: insights from first-principles calculations. Journal of Physics Condensed Matter, 2015, 27, 225304.	1.8	33
25	Quasi-Free-Standing Features of Stanene/Stanane on InSe and GaTe Nanosheets: A Computational Study. Journal of Physical Chemistry C, 2015, 119, 27848-27854.	3.1	24
26	Unusual structural and electronic properties of porous silicene and germanene: insights from first-principles calculations. Nanoscale Research Letters, 2015, 10, 13.	5.7	29
27	Electronic Structure and Carrier Mobilities of Arsenene and Antimonene Nanoribbons: A First-Principle Study. Nanoscale Research Letters, 2015, 10, 955.	5.7	137
28	Structural, Electronic, and Magnetic Properties of Adatom Adsorptions on Black and Blue Phosphorene: A First-Principles Study. Journal of Physical Chemistry C, 2015, 119, 10610-10622.	3.1	196
29	The electronic structures of group-V–group-IV hetero-bilayer structures: a first-principles study. Physical Chemistry Chemical Physics, 2015, 17, 27769-27776.	2.8	54
30	Hydrogen-induced stabilization and tunable electronic structures of penta-silicene: a computational study. Journal of Materials Chemistry C, 2015, 3, 11341-11348.	5.5	85
31	Electronic structures of reconstructed zigzag silicene nanoribbons. Applied Physics Letters, 2014, 104,	3.3	46
32	Firstâ€principles study of the electronic and magnetic properties of 4â€8 lineâ€defectâ€embedded BN sheets decorated with transition metals. Annalen Der Physik, 2014, 526, 415-422.	2.4	18
33	Tunable magnetic and electronic properties of BN nanosheets with triangular defects: a first-principles study. Journal of Physics Condensed Matter, 2014, 26, 435302.	1.8	6
34	Anisotropic elastic behaviour and one-dimensional metal in phosphorene. Physica Status Solidi - Rapid Research Letters, 2014, 8, 939-942.	2.4	29
35	Geometric and Electronic Structures of Two-Dimensional SiC ₃ Compound. Journal of Physical Chemistry C, 2014, 118, 4509-4515.	3.1	74
36	Electronic structures of silicene/GaS heterosheets. Applied Physics Letters, 2013, 103, .	3.3	105

#	Article	IF	Citations
37	Density Functional Theory Study of the Silicene-like SiX and XSi ₃ (X = B, C, N, Al, P) Honeycomb Lattices: The Various Buckled Structures and Versatile Electronic Properties. Journal of Physical Chemistry C, 2013, 117, 18266-18278.	3.1	271
38	Strain-induced self-doping in silicene and germanene from first-principles. Solid State Communications, 2013, 155, 6-11.	1.9	131
39	Mechanical and electronic properties of stoichiometric silicene and germanene oxides from firstâ€principles. Physica Status Solidi - Rapid Research Letters, 2013, 7, 410-413.	2.4	38
40	Structural, Electronic, and Magnetic Properties of the Semifluorinated Boron Nitride Bilayer: A First-Principles Study. Journal of Physical Chemistry C, 2013, 117, 3114-3121.	3.1	12
41	Electronic structures of zigzag silicene nanoribbons with asymmetric sp2â^'sp3 edges. Applied Physics Letters, 2013, 102, .	3.3	74
42	Back Cover: Mechanical and electronic properties of stoichiometric silicene and germanene oxides from firstâ€principles (Phys. Status Solidi RRL 6/2013). Physica Status Solidi - Rapid Research Letters, 2013, 7, .	2.4	0
43	First-principles study of the triwing graphene nanoribbons: junction-dependent electronic structures and electric field modulations. Physical Chemistry Chemical Physics, 2012, 14, 2040.	2.8	3
44	Electronic structures of silicene fluoride and hydride. Applied Physics Letters, 2012, 100, .	3.3	165
45	Stereo Boron Nitride Nanoribbons with Junction-Dependent Electronic Structures from First-Principles. Journal of Physical Chemistry C, 2012, 116, 5995-6003.	3.1	15
46	Electronic structures of zigzag SiC nanoribbons with asymmetric hydrogen-terminations. Applied Physics Letters, 2012, 101, 013102.	3.3	42
47	Electronic structure of fluorinated and hydrogenated beryllium monoxide nanostructures. Physica Status Solidi - Rapid Research Letters, 2012, 6, 83-85.	2.4	8
48	Electronic Structures of Porous Graphene, BN, and BC ₂ N Sheets with One- and Two-Hydrogen Passivations from First Principles. Journal of Physical Chemistry C, 2011, 115, 5334-5343.	3.1	48
49	Electronic structures of Fe-terminated armchair boron nitride nanoribbons. Applied Physics Letters, 2011, 99, .	3.3	25
50	First-principles study of half-metallicity in semi-hydrogenated BC3, BC5, BC7, and B-doped graphone sheets. Nanoscale Research Letters, 2011, 6, 190.	5.7	20
51	First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M=Mo, Nb, W, Ta; X=S, Se, Te) monolayers. Physica B: Condensed Matter, 2011, 406, 2254-2260.	2.7	613
52	Electronic structures of graphane sheets with foreign atom substitutions. Applied Physics Letters, 2011, 98, .	3.3	34
53	Fluorination-induced half-metallicity in zigzag boron nitride nanoribbons: First-principles calculations. Physical Review B, 2010, 81, .	3.2	66
54	Electronic structures of fully fluorinated and semifluorinated zinc oxide sheets. Applied Physics Letters, 2010, 96, .	3.3	26

#	Article	IF	Citations
55	Structural, Electronic, and Magnetic Properties of Defects in the BC ₃ Sheet from First Principles. Journal of Physical Chemistry C, 2010, 114, 12416-12421.	3.1	37
56	Electronic structures of BC3 nanoribbons. Applied Physics Letters, 2009, 94, .	3.3	58
57	Ground-state phase diagram of Na _{<i>x</i>} CoO ₂ : correlation of Na ordering with CoO ₂ stacking sequences. Journal of Physics Condensed Matter, 2009, 21, 035401.	1.8	15
58	Electronic properties of boron nanotubes with axial strain. Frontiers of Physics in China, 2009, 4, 383-388.	1.0	5
59	Electronic and magnetic properties of 3d transition-metal selenides from first principles. Solid State Communications, 2009, 149, 505-509.	1.9	22
60	First-principles study of pressure effects on and. Solid State Communications, 2009, 149, 2125-2129.	1.9	12
61	Tuning Electronic Properties of Hydro-Boronâ^'Carbon Compounds by Hydrogen and Boron Contents: A First Principles Study. Journal of Physical Chemistry C, 2009, 113, 18468-18472.	3.1	39
62	Electronic structures of silicon nanoribbons. Applied Physics Letters, 2009, 95, .	3.3	276
63	Electronic properties of graphene nanoribbons embedded in boron nitride sheets. Applied Physics Letters, 2009, 95, .	3.3	123
64	The stabilities of boron nitride nanoribbons with different hydrogen-terminated edges. Applied Physics Letters, 2009, 94, .	3.3	73
65	Electronic structures of boron nanoribbons. Applied Physics Letters, 2008, 93, .	3.3	40
66	<i>Ab initio</i> prediction of stable boron sheets and boron nanotubes: Structure, stability, and electronic properties. Physical Review B, 2008, 77, .	3.2	315
67	Adsorption on the carbon nanotubes. Frontiers of Physics in China, 2006, 1, 317-322.	1.0	9
68	Ground states of diatomic molecules adsorbed on single-walled carbon nanotubes. Physical Review B, 2006, 74, .	3.2	5