Mateusz Tokarczyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1177694/publications.pdf

Version: 2024-02-01

840776 888059 41 368 11 17 citations h-index g-index papers 41 41 41 692 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Systemic consequences of disorder in magnetically self-organized topological MnBi ₂ Te ₄ /(Bi ₂ Te ₃) _n superlattices. 2D Materials, 2022, 9, 015026.	4.4	11
2	Angle-resolved optically detected magnetic resonance as a tool for strain determination in nanostructures. Physical Review B, 2022, 105, .	3.2	2
3	Delamination of Large Area Layers of Hexagonal Boron Nitride Grown by MOVPE. Acta Physica Polonica A, 2021, 139, 457-461.	0.5	4
4	Impact of Thermal Oxidation on Morphological, Structural and Magnetic Properties of Fe-Ni Wire-Like Nanochains. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 3530-3540.	2.2	1
5	Towards practical applications of quantum emitters in boron nitride. Scientific Reports, 2021, 11, 15506.	3.3	6
6	Evolution of Structural and Magnetic Properties of Fe-Co Wire-like Nanochains Caused by Annealing Atmosphere. Materials, 2021, 14, 4748.	2.9	1
7	Molecular Beam Epitaxy of a 2D Material Nearly Lattice Matched to a 3D Substrate: NiTe ₂ on GaAs. Crystal Growth and Design, 2021, 21, 5773-5779.	3.0	8
8	The effects of doping and coating on degradation kinetics in perovskites. Solar Energy Materials and Solar Cells, 2021, 230, 111142.	6.2	8
9	Two stage epitaxial growth of wafer-size multilayer h-BN by metal-organic vapor phase epitaxy – a homoepitaxial approach. 2D Materials, 2021, 8, 015017.	4.4	20
10	Heteroepitaxial Growth of High Optical Quality, Wafer-Scale van der Waals Heterostrucutres. ACS Applied Materials & Diterfaces, 2021, 13, 47904-47911.	8.0	14
11	Magnetic-field-induced synthesis of amorphous iron-nickel wire-like nanostructures. Materials Chemistry and Physics, 2020, 246, 122812.	4.0	11
12	Hydrostatic pressure influence on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>T</mml:mi><mml:mi>C</mml:mi>in (Ga,Mn)As. Physical Review B, 2020, 101, .</mml:msub></mml:math>	· <b เรเนาไ:ms	sub3
13	Amorphous Fe _{<i>x</i>} Co _{1–<i>x</i>} Wire-like Nanostructures Manufactured through Surfactant-Free Magnetic-Field-Induced Synthesis. Crystal Growth and Design, 2020, 20, 3208-3216.	3.0	7
14	Towards Magnetic Bimetallic Wire-Like Nanostructures — Magnetic Field as Growth Parameter. Acta Physica Polonica A, 2020, 137, 59-61.	0.5	1
15	TEM Studies of Fe $1\hat{a}$ °xNix Nanowires by Magnetic-Field-Induced Synthesis. Microscopy and Microanalysis, 2019, 25, 2194-2195.	0.4	O
16	Hybrid electrode composed of multiwall carbon nanotubes decorated with magnetite nanoparticles for aqueous supercapacitors. Journal of Energy Storage, 2019, 26, 101020.	8.1	26
17	Growth of highly oriented MoS ₂ <i>via</i> an intercalation process in the graphene/SiC(0001) system. Physical Chemistry Chemical Physics, 2019, 21, 20641-20646.	2.8	8
18	Thermal Treatment of Chains of Amorphous Fe _{1â€"<i>x</i>} Co <i>_x</i> Nanoparticles Made by Magnetic-Field-Induced Coreduction Reaction. IEEE Magnetics Letters, 2019, 10, 1-5.	1.1	4

#	Article	IF	CITATIONS
19	Surface-enhanced Raman scattering in graphene deposited on Al Ga1â^'N/GaN axial heterostructure nanowires. Applied Surface Science, 2019, 475, 559-564.	6.1	7
20	Influence of Active Layer Processing on Electrical Properties and Efficiency of Polymer-Fullerene Organic Solar Cells. Acta Physica Polonica A, 2019, 136, 579-585.	0.5	6
21	Magnetic and Structural Properties of ZnO Implanted with Co, Kr, and Ar Ions. Acta Physica Polonica A, 2019, 136, 628-632.	0.5	1
22	An Influence of X-Ray Irradiation on Mid-Bandgap Luminescence of Boron Nitride Epitaxial Layers. Acta Physica Polonica A, 2019, 136, 620-623.	0.5	0
23	Impact of thermal oxidation on chemical composition and magnetic properties of iron nanoparticles. Journal of Magnetism and Magnetic Materials, 2018, 458, 346-354.	2.3	17
24	Nanocomposite composed of multiwall carbon nanotubes covered by hematite nanoparticles as anode material for Li-ion batteries. Electrochimica Acta, 2017, 228, 82-90.	5.2	8
25	Hydrostatic-pressure-induced changes of magnetic anisotropy in (Ga, Mn)As thin films. Journal of Physics Condensed Matter, 2017, 29, 115805.	1.8	3
26	Fe dopant in ZnO: 2+ versus 3+ valency and ion-carrier <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>s</mml:mi><mml:mo>,</mml:mo><td>><ങ്ങളുപ്:mi</td><td>>pı∦mml:mi></td></mml:mrow></mml:math>	>< ങ്ങളുപ്: mi	>p ı ∦mml:mi>
27	High temperature oxidation of iron–iron oxide core–shell nanowires composed of iron nanoparticles. Physical Chemistry Chemical Physics, 2016, 18, 3900-3909.	2.8	42
28	High temperature annealing of iron nanowires. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 862-866.	1.8	15
29	Preparation and Characterization of Hematite-Multiwall Carbon Nanotubes Nanocomposite. Journal of Superconductivity and Novel Magnetism, 2015, 28, 901-904.	1.8	3
30	New X-ray insight into oxygen intercalation in epitaxial graphene grown on 4 <i>H</i> -SiC(0001). Journal of Applied Physics, 2015, 117, .	2.5	24
31	Magnetic anisotropy investigations of (Ga,Mn)As with a large epitaxial strain. Journal of Magnetism and Magnetic Materials, 2015, 396, 48-52.	2.3	6
32	Structural and Electronic Properties of Graphene Oxide and Reduced Graphene Oxide Papers Prepared by High Pressure and High Temperature Treatment. Acta Physica Polonica A, 2014, 126, 1190-1194.	0.5	14
33	Interplay of Magnetic Anisotropies in Epitaxial Ferromagnetic Hybrids of Fe and (Ga,Mn)As. Journal of the Magnetics Society of Japan, 2014, 38, 111-114.	0.9	0
34	Multilayer graphene stacks grown by different methods-thickness measurements by X-ray diffraction, Raman spectroscopy and optical transmission. Crystallography Reports, 2013, 58, 1053-1057.	0.6	6
35	MBE growth and characterization of a Il–VI distributed Bragg reflector and microcavity lattice-matched to MgTe. Journal of Crystal Growth, 2013, 378, 266-269.	1.5	14
36	Magnetic Properties of Epitaxial Fe/(Ga,Mn)As Hybrids. Acta Physica Polonica A, 2013, 124, 873-876.	0.5	0

#	Article	IF	CITATIONS
37	CVD Growth of Graphene Stacks on 4H-SiC (0001) Surface - X-ray Diffraction and Raman Spectroscopy Study. Acta Physica Polonica A, 2013, 124, 768-771.	0.5	4
38	Superconductivity Study of GaN Highly Doped by Transition Metals. Acta Physica Polonica A, 2013, 124, 877-880.	0.5	0
39	Structural investigations of hydrogenated epitaxial graphene grown on 4H-SiC (0001). Applied Physics Letters, 2013, 103, 241915.	3.3	25
40	Epitaxial graphene perfection vs. SiC substrate quality. Open Physics, 2011, 9, 446-453.	1.7	0
41	Epitaxial Growth on 4H-SiC on-Axis, 0.5°, 1.25°, 2°, 4°, 8° Off-Axis Substrates – Defects Analysis and Reduction. Materials Science Forum, 0, 679-680, 95-98.	0.3	20