
Guanjia Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11774863/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Beyond Platinum: Bubble-Propelled Micromotors Based on Ag and MnO ₂ Catalysts. Journal of the American Chemical Society, 2014, 136, 2719-2722.	13.7	205
2	Externalâ€Energyâ€Independent Polymer Capsule Motors and Their Cooperative Behaviors. Chemistry - A European Journal, 2011, 17, 12020-12026.	3.3	114
3	Biomimetic Artificial Inorganic Enzymeâ€Free Selfâ€Propelled Microfish Robot for Selective Detection of Pb ²⁺ in Water. Chemistry - A European Journal, 2014, 20, 4292-4296.	3.3	99
4	Poisoning of bubble propelled catalytic micromotors: the chemical environment matters. Nanoscale, 2013, 5, 2909.	5.6	86
5	Crucial Role of Surfactants in Bubble-Propelled Microengines. Journal of Physical Chemistry C, 2014, 118, 5268-5274.	3.1	79
6	Challenges of the movement of catalytic micromotors in blood. Lab on A Chip, 2013, 13, 1930.	6.0	69
7	Micromotors with built-in compasses. Chemical Communications, 2012, 48, 10090.	4.1	61
8	Concentric bimetallic microjets by electrodeposition. RSC Advances, 2013, 3, 3963.	3.6	61
9	Macroscopic Selfâ€Propelled Objects. Chemistry - an Asian Journal, 2012, 7, 1994-2002.	3.3	58
10	Magnetotactic Artificial Self-Propelled Nanojets. Langmuir, 2013, 29, 7411-7415.	3.5	57
11	Self-propelled nanojets via template electrodeposition. Nanoscale, 2013, 5, 1319-1324.	5.6	54
12	Marangoni self-propelled capsules in a maze: pollutants â€~sense and act' in complex channel environments. Lab on A Chip, 2014, 14, 2818-2823.	6.0	47
13	Geometric asymmetry driven Janus micromotors. Nanoscale, 2014, 6, 11177-11180.	5.6	43
14	Influence of real-world environments on the motion of catalytic bubble-propelled micromotors. Lab on A Chip, 2013, 13, 2937.	6.0	40
15	Liquid–Liquid Interface Motion of a Capsule Motor Powered by the Interlayer Marangoni Effect. Journal of Physical Chemistry B, 2012, 116, 10960-10963.	2.6	39
16	Towards biocompatible nano/microscale machines: self-propelled catalytic nanomotors not exhibiting acute toxicity. Nanoscale, 2014, 6, 2119-2124.	5.6	39
17	Surfactant Capsules Propel Interfacial Oil Droplets: An Environmental Cleanup Strategy. ChemPlusChem, 2013, 78, 395-397.	2.8	38
18	Artificial micro-cinderella based on self-propelled micromagnets for the active separation of paramagnetic particles. Chemical Communications, 2013, 49, 5147.	4.1	27

Guanjia Zhao

#	Article	IF	CITATIONS
19	Corrosion of self-propelled catalytic microengines. Chemical Communications, 2013, 49, 9125.	4.1	27
20	Blood Proteins Strongly Reduce the Mobility of Artificial Selfâ€Propelled Micromotors. Chemistry - A European Journal, 2013, 19, 16756-16759.	3.3	27
21	Enhanced diffusion of pollutants by self-propulsion. Physical Chemistry Chemical Physics, 2011, 13, 12755.	2.8	24
22	Blood electrolytes exhibit a strong influence on the mobility of artificial catalytic microengines. Physical Chemistry Chemical Physics, 2013, 15, 17277.	2.8	24
23	Reynolds numbers influence the directionality of self-propelled microjet engines in the 10â^'4 regime. Nanoscale, 2013, 5, 7277.	5.6	22
24	Clean room-free rapid fabrication of roll-up self-powered catalytic microengines. Journal of Materials Chemistry A, 2014, 2, 1219-1223.	10.3	22
25	Blood metabolite strongly suppresses motion of electrochemically deposited catalytic self-propelled microjet engines. Electrochemistry Communications, 2014, 38, 128-130.	4.7	10
26	Reynolds numbers exhibit dramatic influence on directionality of movement of self-propelled systems. Physical Chemistry Chemical Physics, 2012, 14, 6456.	2.8	9
27	Remote Electrochemical Monitoring of an Autonomous Self-Propelled Capsule. Journal of Physical Chemistry C, 2014, 118, 29896-29902.	3.1	9
28	Surfactant Capsules Propel Interfacial Oil Droplets: An Environmental Cleanup Strategy. ChemPlusChem, 2013, 78, 384-384.	2.8	3