
Yiliang Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11774859/publications.pdf Version: 2024-02-01

YILLANG WIL

#	Article	IF	CITATIONS
1	High-Performance Semiconducting Polythiophenes for Organic Thin-Film Transistors. Journal of the American Chemical Society, 2004, 126, 3378-3379.	13.7	1,018
2	Facile Synthesis of Silver Nanoparticles Useful for Fabrication of High-Conductivity Elements for Printed Electronics. Journal of the American Chemical Society, 2005, 127, 3266-3267.	13.7	456
3	Low-Temperature, Solution-Processed, High-Mobility Polymer Semiconductors for Thin-Film Transistors. Journal of the American Chemical Society, 2007, 129, 4112-4113.	13.7	347
4	Indolo[3,2-b]carbazole-Based Thin-Film Transistors with High Mobility and Stability. Journal of the American Chemical Society, 2005, 127, 614-618.	13.7	339
5	Thiophene Polymer Semiconductors for Organic Thinâ€Film Transistors. Chemistry - A European Journal, 2008, 14, 4766-4778.	3.3	274
6	A Simple and Efficient Approach to a Printable Silver Conductor for Printed Electronics. Journal of the American Chemical Society, 2007, 129, 1862-1863.	13.7	144
7	Polyindolo[3,2-b]carbazoles:Â A New Class of p-Channel Semiconductor Polymers for Organic Thin-Film Transistors. Macromolecules, 2006, 39, 6521-6527.	4.8	141
8	Photoinduced Alignment of Polymer Liquid Crystals Containing Azobenzene Moieties in the Side Chain. 1. Effect of Light Intensity on Alignment Behavior. Macromolecules, 1998, 31, 349-354.	4.8	139
9	Controlled orientation of liquid-crystalline polythiophene semiconductors for high-performance organic thin-film transistors. Applied Physics Letters, 2005, 86, 142102.	3.3	130
10	Synthesis and Thin-Film Transistor Performance of Poly(4,8-didodecylbenzo[1,2-b:4,5-bâ€~]dithiophene). Chemistry of Materials, 2006, 18, 3237-3241.	6.7	130
11	Printed Silver Ohmic Contacts for High-Mobility Organic Thin-Film Transistors. Journal of the American Chemical Society, 2006, 128, 4202-4203.	13.7	119
12	Spatially Resolved Raman Spectroelectrochemistry of Solid-State Polythiophene/Viologen Memory Devices. Journal of the American Chemical Society, 2012, 134, 14869-14876.	13.7	118
13	Enabling Gate Dielectric Design for All Solution-Processed, High-Performance, Flexible Organic Thin-Film Transistors. Journal of the American Chemical Society, 2006, 128, 4554-4555.	13.7	117
14	Stable Solution-Processed High-Mobility Substituted Pentacene Semiconductors. Chemistry of Materials, 2007, 19, 418-423.	6.7	114
15	Photoinduced Alignment of Polymer Liquid Crystals Containing Azobenzene Moieties in the Side Chain. 2. Effect of Spacer Length of the Azobenzene Unit on Alignment Behavior. Macromolecules, 1998, 31, 1104-1108.	4.8	107
16	Photoinduced Alignment of Polymer Liquid Crystals Containing Azobenzene Moieties in the Side Chain. 5. Effect of the Azo Contents on Alignment Behavior and Enhanced Response. Macromolecules, 1999, 32, 3951-3956.	4.8	103
17	Three-Dimensional Manipulation of an Azo Polymer Liquid Crystal with Unpolarized Light. Advanced Materials, 1999, 11, 300-302.	21.0	101
18	Lamination Method for the Study of Interfaces in Polymeric Thin Film Transistors. Journal of the American Chemical Society, 2004, 126, 13928-13929.	13.7	96

#	Article	IF	CITATIONS
19	Poly(3,3â€~ â€~-dialkylterthiophene)s:  Room-Temperature, Solution-Processed, High-Mobility Semicondu for Organic Thin-Film Transistors. Chemistry of Materials, 2005, 17, 221-223.	ictors 6.7	95
20	Microscopic Studies on Liquid Crystal Poly(3,3â€~Ââ€~â€~-dialkylquaterthiophene) Semiconductor. Macromolecules, 2004, 37, 8307-8312.	4.8	86
21	Photoinduced Birefringence and Surface Relief Gratings in Novel Polyurethanes with Azobenzene Groups in the Main Chain. Macromolecules, 2001, 34, 7822-7828.	4.8	84
22	Studies of Gold Nanoparticles as Precursors to Printed Conductive Features for Thin-Film Transistors. Chemistry of Materials, 2006, 18, 4627-4632.	6.7	84
23	Short channel effects in regioregular poly(thiophene) thin film transistors. Journal of Applied Physics, 2004, 96, 2063-2070.	2.5	81
24	Photoinduced Chirality in Thin Films of Achiral Polymer Liquid Crystals Containing Azobenzene Chromophores. Macromolecules, 2004, 37, 6801-6805.	4.8	81
25	Polythiophene-based field-effect transistors with enhanced air stability. Synthetic Metals, 2004, 142, 49-52.	3.9	73
26	Self-aligned inkjet printing of highly conducting gold electrodes with submicron resolution. Journal of Applied Physics, 2007, 101, 064513.	2.5	73
27	Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side chain. 4. Dynamic study of the alignment process. Polymer, 1999, 40, 4787-4793.	3.8	70
28	Photoinduced Alignment of Polymer Liquid Crystals Containing Azobenzene Moieties in the Side Chain. 3. Effect of Structure of Photochromic Moieties on Alignment Behavior. Macromolecules, 1998, 31, 4457-4463.	4.8	66
29	Photoinduced Alignment of Polymer Liquid Crystals Containing Azobenzene Moieties in the Side Chain. 6. Biaxiality and Three-Dimensional Reorientation. Macromolecules, 1999, 32, 8829-8835.	4.8	65
30	Photoinduced Birefringence and Surface Relief Gratings in Polyurethane Elastomers with Azobenzene Chromophore in the Hard Segment. Macromolecules, 2004, 37, 6090-6095.	4.8	64
31	Effects of humidity on unencapsulated poly(thiophene) thin-film transistors. Applied Physics Letters, 2006, 88, 113514.	3.3	61
32	Inkjet printing narrow electrodes with <50â€,μm line width and channel length for organic thin-film transistors. Applied Physics Letters, 2009, 94, .	3.3	58
33	A More Than Six Orders of Magnitude UVâ€Responsive Organic Fieldâ€Effect Transistor Utilizing a Benzothiophene Semiconductor and Disperse Red 1 for Enhanced Charge Separation. Advanced Materials, 2015, 27, 228-233.	21.0	54
34	Direct Observation of Alkyl Chain Interdigitation in Conjugated Polyquarterthiophene Selfâ€Organized on Graphite Surfaces. Macromolecular Rapid Communications, 2008, 29, 1197-1202.	3.9	53
35	Novel High-Performance Liquid-Crystalline Organic Semiconductors for Thin-Film Transistors. Chemistry of Materials, 2009, 21, 2727-2732.	6.7	46
36	Redox-Gated Three-Terminal Organic Memory Devices: Effect of Composition and Environment on Performance. ACS Applied Materials & amp; Interfaces, 2013, 5, 11052-11058.	8.0	41

#	Article	IF	CITATIONS
37	High performance nanocomposite thin film transistors with bilayer carbon nanotube-polythiophene active channel by ink-jet printing. Journal of Applied Physics, 2009, 106, .	2.5	40
38	Design of High-Performance Regioregular Polythiophenes for Organic Thin-Film Transistors. Proceedings of the IEEE, 2005, 93, 1412-1419.	21.3	39
39	Redox driven conductance changes for resistive memory. Applied Physics A: Materials Science and Processing, 2011, 102, 841-850.	2.3	38
40	Investigation of circular Bragg reflection in an azo polymer with photoinduced chirality. Journal of Applied Physics, 2003, 94, 2162-2166.	2.5	37
41	ZnO field-effect transistors prepared by aqueous solution-growth ZnO crystal thin film. Journal of Applied Physics, 2007, 102, 076101.	2.5	36
42	Highly UV‧ensitive and Responsive Benzothiophene/Dielectric Polymer Blendâ€Based Organic Thinâ€Film Phototransistor. Advanced Electronic Materials, 2015, 1, 1500119.	5.1	36
43	Facile Inkjet-Printing Self-Aligned Electrodes for Organic Thin-Film Transistor Arrays with Small and Uniform Channel Length. ACS Applied Materials & Interfaces, 2010, 2, 2189-2192.	8.0	35
44	Organic thin-film transistors with poly(methyl silsesquioxane) modified dielectric interfaces. Applied Physics Letters, 2006, 89, 013505.	3.3	31
45	Organic thin-film transistor integration using silicon nitride gate dielectric. Applied Physics Letters, 2007, 90, 133514.	3.3	31
46	High-Performance Polythiophene Thin-Film Transistors Processed with Environmentally Benign Solvent. Macromolecules, 2010, 43, 6368-6373.	4.8	29
47	Precise parameter extraction technique for organic thin-film transistors operating in the linear regime. Journal of Applied Physics, 2014, 115, .	2.5	27
48	Poly(3,3‴-didodecylquarterthiophene) field effect transistors with single-walled carbon nanotube based source and drain electrodes. Applied Physics Letters, 2007, 91, 223512.	3.3	26
49	Ion Transport and Switching Speed in Redox-Gated 3-Terminal Organic Memory Devices. Journal of the Electrochemical Society, 2014, 161, H831-H838.	2.9	21
50	Direct Method of Tracing the Wetting States on Nanocomposite Surfaces. Langmuir, 2010, 26, 7686-7689.	3.5	19
51	Effect of Polymer Binders on UV-Responsive Organic Thin-Film Phototransistors with Benzothienobenzothiophene Semiconductor. ACS Applied Materials & Interfaces, 2016, 8, 3744-3754.	8.0	18
52	Enhancement of Carrier Mobilities of Organic Semiconductors on Sol–Gel Dielectrics: Investigations of Molecular Organization and Interfacial Chemistry Effects. Advanced Functional Materials, 2009, 19, 378-385.	14.9	15
53	Photoinduced alignment of polymer liquid crystals containing azobenzene moieties in the side group VII. On He-Ne laser beam irradiation. Liquid Crystals, 2000, 27, 749-753.	2.2	14
54	Binary Blends of Polyimide and Benzothienobenzothiophene for Highâ€Performance Solutionâ€Processed Organic Phototransistors. Advanced Electronic Materials, 2017, 3, 1700284.	5.1	14

#	Article	IF	CITATIONS
55	A comparative study of plasma-enhanced chemical vapor gate dielectrics for solution-processed polymer thin-film transistor circuit integration. Journal of Applied Physics, 2008, 104, .	2.5	12
56	Direct spectroscopic monitoring of conductance switching in polythiophene memory devices. Electrochimica Acta, 2013, 110, 437-445.	5.2	12
57	Graphene Nanoplatelets Prepared by Electric Heating Acid-Treated Graphite in a Vacuum Chamber and Their Use as Additives in Organic Semiconductors. ACS Applied Materials & Interfaces, 2014, 6, 20269-20275.	8.0	12
58	Optical Switching and Image Storage by Means of Photochromic Liquid Crystals. Molecular Crystals and Liquid Crystals, 2000, 347, 1-13.	0.3	9
59	Composite Semiconductor Material of Carbon Nanotubes and Poly[5,5′-bis(3-dodecyl-2-thienyl)-2,2′-bithiophene] for High-Performance Organic Thin-Film Transistors. Journal of Electronic Materials, 2013, 42, 3481-3488.	2.2	8
60	Miscibility of phenoxy polymer/polyacrylate blends. Macromolecular Chemistry and Physics, 1996, 197, 3191-3197.	2.2	7
61	Miscibility of phenoxy polymer/poly(methyl acrylate-co-methyl methacrylate) blends. European Polymer Journal, 1998, 34, 1261-1263.	5.4	7
62	Benzothienobenzothiophene/polyimide blend-based organic phototransistors with double-layer gate dielectric. Organic Electronics, 2018, 59, 349-357.	2.6	7
63	Effects of gate dielectric surface modification on phototransistors with polymer-blended benzothieno[2,3- b]benzothiophene semiconductor thin films. Organic Electronics, 2017, 44, 253-262.	2.6	6
64	Unsorted single walled carbon nanotubes enabled the fabrication of high performance organic thin film transistors with low cost metal electrodes. Chemical Communications, 2013, 49, 8791.	4.1	5
65	Using unsorted single-wall carbon nanotubes to enhance mobility of diketopyrrolopyrrole-quarterthiophene copolymer in thin-film transistors. Organic Electronics, 2014, 15, 2639-2646.	2.6	5
66	Sensitivity of the threshold voltage of organic thin-film transistors to light and water. Journal of Applied Physics, 2015, 117, .	2.5	5
67	Enabling Materials for Printed Electronics. , 2006, , .		4
68	Effects of semiconductor-dielectric interfaces on polymeric thin-film transistors. , 2005, , .		3
69	Development of Silver Nanoparticle Ink for Printed Electronics. Journal of Microelectronics and Electronic Packaging, 2013, 10, 49-53.	0.7	3
70	Printed Organic Electronics. , 2005, , 219-243.		1
71	Printed polymer and a‧i TFT backplanes for flexible displays. Journal of Information Display, 2005, 6, 12-17.	4.0	1
72	Substituted Indolo[3,2-b]Carbazoles: A New Class of Stable, High Mobility Organic Semiconductors for Thin Film Transistors. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	0

#	Article	IF	CITATIONS
73	Organic Thin Film Transistors with Contacts Printed from Metal Nanoparticles. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	0
74	Study of Organic Thin-film Transistor on Silicon Nitride Gate Dielectrics for Integration in Display Circuits and Arrays. , 2006, , .		0
75	Comparison of conductor and dielectric inks in printed organic complementary transistors. Proceedings of SPIE, 2014, , .	0.8	0