
Benito CaÑas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11771942/publications.pdf Version: 2024-02-01

RENITO CAÃ'AS

#	Article	IF	CITATIONS
1	Trends in sample preparation for classical and second generation proteomics. Journal of Chromatography A, 2007, 1153, 235-258.	3.7	167
2	Species Differentiation of Seafood Spoilage and Pathogenic Gram-Negative Bacteria by MALDI-TOF Mass Fingerprinting. Journal of Proteome Research, 2010, 9, 3169-3183.	3.7	144
3	Elemental Bioimaging in Kidney by LA–ICP–MS As a Tool to Study Nephrotoxicity and Renal Protective Strategies in Cisplatin Therapies. Analytical Chemistry, 2011, 83, 7933-7940.	6.5	130
4	Mass spectrometry technologies for proteomics. Briefings in Functional Genomics & Proteomics, 2006, 4, 295-320.	3.8	102
5	Analytical methodologies for metallomics studies of antitumor Pt-containing drugs. Metallomics, 2010, 2, 19-38.	2.4	98
6	Rapid direct detection of the major fish allergen, parvalbumin, by selected MS/MS ion monitoring mass spectrometry. Journal of Proteomics, 2012, 75, 3211-3220.	2.4	94
7	Identification of commercial hake and grenadier species by proteomic analysis of the parvalbumin fraction. Proteomics, 2006, 6, 5278-5287.	2.2	90
8	Rapid species identification of seafood spoilage and pathogenic Gramâ€positive bacteria by MALDIâ€TOF mass fingerprinting. Electrophoresis, 2011, 32, 2951-2965.	2.4	85
9	Fast Monitoring of Species-Specific Peptide Biomarkers Using High-Intensity-Focused-Ultrasound-Assisted Tryptic Digestion and Selected MS/MS Ion Monitoring. Analytical Chemistry, 2011, 83, 5688-5695.	6.5	81
10	Improved in-gel approaches to generate peptide maps of integral membrane proteins with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Journal of Mass Spectrometry, 2002, 37, 322-330.	1.6	80
11	<i>De Novo</i> Mass Spectrometry Sequencing and Characterization of Species-Specific Peptides from Nucleoside Diphosphate Kinase B for the Classification of Commercial Fish Species Belonging to the Family Merlucciidae. Journal of Proteome Research, 2007, 6, 3070-3080.	3.7	74
12	Staphylococcus aureus Exotoxins and Their Detection in the Dairy Industry and Mastitis. Toxins, 2020, 12, 537.	3.4	74
13	Highâ€sensitivity analysis of specific peptides in complex samples by selected MS/MS ion monitoring and linear ion trap mass spectrometry: Application to biological studies. Journal of Mass Spectrometry, 2007, 42, 1391-1403.	1.6	68
14	Food authentication of commerciallyâ€relevant shrimp and prawn species: From classical methods to Foodomics. Electrophoresis, 2012, 33, 2201-2211.	2.4	62
15	<scp>S</scp> pectra <scp>B</scp> ank: An open access tool for rapid microbial identification by <scp>MALDI</scp> â€ <scp>TOF MS</scp> fingerprinting. Electrophoresis, 2012, 33, 2138-2142.	2.4	61
16	Extensive <i>De Novo</i> Sequencing of New Parvalbumin Isoforms Using a Novel Combination of Bottom-Up Proteomics, Accurate Molecular Mass Measurement by FTICRâ^'MS, and Selected MS/MS Ion Monitoring. Journal of Proteome Research, 2010, 9, 4393-4406.	3.7	60
17	Safety Assessment of Fresh and Processed Seafood Products by MALDI-TOF Mass Fingerprinting. Food and Bioprocess Technology, 2011, 4, 907-918.	4.7	59
18	Identification and classification of seafoodâ€borne pathogenic and spoilage bacteria: 16 <scp>S</scp> r <scp>RNA</scp> sequencing versus <scp>MALDI</scp> â€ <scp>TOF MS</scp> fingerprinting. Electrophoresis, 2013, 34, 877-887.	2.4	59

Benito CaÑas

#	Article	IF	CITATIONS
19	Mass Spectrometry Characterization of Species-Specific Peptides from Arginine Kinase for the Identification of Commercially Relevant Shrimp Species. Journal of Proteome Research, 2009, 8, 5356-5362.	3.7	58
20	Human proteome enhancement: High-recovery method and improved two-dimensional map of colostral fat globule membrane proteins. Electrophoresis, 2001, 22, 1810-1818.	2.4	57
21	Differential characterization of biogenic amineâ€producing bacteria involved in food poisoning using MALDIâ€TOF mass fingerprinting. Electrophoresis, 2010, 31, 1116-1127.	2.4	55
22	Combined in-gel tryptic digestion and CNBr cleavage for the generation of peptide maps of an integral membrane protein with MALDI-TOF mass spectrometry. Biochimica Et Biophysica Acta - Bioenergetics, 2002, 1555, 111-115.	1.0	51
23	Characterization of <i><scp>S</scp>taphylococcus aureus</i> strains isolated from <scp>I</scp> talian dairy products by <scp>MALDI</scp> â€ <scp>TOF</scp> mass fingerprinting. Electrophoresis, 2012, 33, 2355-2364.	2.4	51
24	Selected tandem mass spectrometry ion monitoring for the fast identification of seafood species. Journal of Chromatography A, 2011, 1218, 4445-4451.	3.7	50
25	Top-Down Mass Spectrometric Approach for the Full Characterization of Insulinâ^'Cisplatin Adducts. Analytical Chemistry, 2009, 81, 3507-3516.	6.5	49
26	Proteomics for the assessment of quality and safety of fishery products. Food Research International, 2013, 54, 972-979.	6.2	48
27	Novel insights into the bottom-up mass spectrometry proteomics approach for the characterization of Pt-binding proteins: The insulin-cisplatin case study. Analyst, The, 2010, 135, 1288.	3.5	44
28	The sarcoplasmic fish proteome: Pathways, metabolic networks and potential bioactive peptides for nutritional inferences. Journal of Proteomics, 2013, 78, 211-220.	2.4	43
29	Identification of commercial prawn and shrimp species of food interest by native isoelectric focusing. Food Chemistry, 2010, 121, 569-574.	8.2	42
30	Comparative analysis of protein extraction methods for the identification of seafood-borne pathogenic and spoilage bacteria by MALDI-TOF mass spectrometry. Analytical Methods, 2010, 2, 1941.	2.7	41
31	Arginine Kinase Peptide Mass Fingerprinting as a Proteomic Approach for Species Identification and Taxonomic Analysis of Commercially Relevant Shrimp Species. Journal of Agricultural and Food Chemistry, 2009, 57, 5665-5672.	5.2	37
32	Characterization of Pt-protein complexes by nHPLC–ESI-LTQ MS/MS using a gel-based bottom-up approach. Talanta, 2012, 88, 599-608.	5.5	36
33	LA-ICP-MS and nHPLC-ESI-LTQ-FT-MS/MS for the analysis of cisplatin–protein complexes separated by two dimensional gel electrophoresis in biological samples. Journal of Analytical Atomic Spectrometry, 2012, 27, 1474.	3.0	36
34	Species identification of the Northern shrimp (Pandalus borealis) by polymerase chain reaction–restriction fragment length polymorphism and proteomic analysis. Analytical Biochemistry, 2012, 421, 56-67.	2.4	33
35	Characterization of Foodborne Strains of Staphylococcus aureus by Shotgun Proteomics: Functional Networks, Virulence Factors and Species-Specific Peptide Biomarkers. Frontiers in Microbiology, 2017, 8, 2458.	3.5	32
36	OFFGEL isoelectric focusing and polyacrylamide gel electrophoresis separation of platinum-binding proteins. Journal of Chromatography A, 2011, 1218, 1281-1290.	3.7	29

BENITO CAÑAS

#	Article	IF	CITATIONS
37	Advanced proteomics and systems biology applied to study food allergy. Current Opinion in Food Science, 2018, 22, 9-16.	8.0	18
38	Fast Global Phosphoproteome Profiling of Jurkat T Cells by HIFU-TiO2-SCX-LC-MS/MS. Analytical Chemistry, 2017, 89, 8853-8862.	6.5	17
39	Characterization of Bacteriophage Peptides of Pathogenic Streptococcus by LC-ESI-MS/MS: Bacteriophage Phylogenomics and Their Relationship to Their Host. Frontiers in Microbiology, 2020, 11, 1241.	3.5	12
40	Discrimination of South African Commercial Fish Species (<i>Merluccius) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 62 Aquatic Food Product Technology, 2009, 18, 67-78.</i>	27 Td (cap 1.4	ensisand 10
41	Proteomic Characterization of Bacteriophage Peptides from the Mastitis Producer Staphylococcus aureus by LC-ESI-MS/MS and the Bacteriophage Phylogenomic Analysis. Foods, 2021, 10, 799.	4.3	9
42	Fish Authentication. , 2013, , 205-222.		5
43	Proteomics Tools for Food Fingerprints. Comprehensive Analytical Chemistry, 2014, , 201-222.	1.3	4
44	Proteomic Identification of Commercial Fish Species. , 2017, , 317-330.		2
45	Rapid Shotgun Analysis. Methods in Molecular Biology, 2021, 2259, 259-268.	0.9	0
46	A Method to Compare MALDI—TOF MS PMF Spectra and Its Application in Phyloproteomics. Lecture Notes in Computer Science, 2009, , 1147-1153.	1.3	0