
Andrea M Hodge

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11767801/publications.pdf Version: 2024-02-01

ANDREA M HODCE

#	Article	IF	CITATIONS
1	Size Effects on the Mechanical Behavior of Nanoporous Au. Nano Letters, 2006, 6, 2379-2382.	9.1	423
2	Nanoporous Au: A high yield strength material. Journal of Applied Physics, 2005, 97, 024301.	2.5	284
3	Nanoporous Metals by Alloy Corrosion: Formation and Mechanical Properties. MRS Bulletin, 2009, 34, 577-586.	3.5	264
4	Nanoporous Plasmonic Metamaterials. Advanced Materials, 2008, 20, 1211-1217.	21.0	242
5	Microscopic failure behavior of nanoporous gold. Applied Physics Letters, 2005, 87, 121908.	3.3	137
6	On the Microstructure of Nanoporous Gold: An X-ray Diffraction Study. Nano Letters, 2009, 9, 1158-1163.	9.1	132
7	Stress and microstructure evolution in thick sputtered films. Acta Materialia, 2009, 57, 2055-2065.	7.9	116
8	Nanoporous Metals with Structural Hierarchy: A Review. Advanced Engineering Materials, 2017, 19, 1700389.	3.5	103
9	Incipient plasticity during nanoindentation at elevated temperatures. Applied Physics Letters, 2004, 85, 1362-1364.	3.3	74
10	Study of β precipitation and layer structure formation in Al 5083: The role of dispersoids and grain boundaries. Journal of Alloys and Compounds, 2017, 703, 242-250.	5.5	54
11	Morphology, Oxidation, and Mechanical Behavior of Nanoporous Cu Foams. Advanced Engineering Materials, 2012, 14, 219-226.	3.5	52
12	Measurement and modeling of creep in open-cell NiAl foams. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34, 2353-2363.	2.2	50
13	The role of grain boundary plane orientation in the β phase precipitation of an Al–Mg alloy. Scripta Materialia, 2014, 89, 49-52.	5.2	44
14	Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries. Scientific Reports, 2016, 6, 26870.	3.3	44
15	Mechanical response of freestanding Au nanopillars under compression. Applied Physics Letters, 2007, 91, .	3.3	41
16	Strength scale behavior of nanoporous Ag, Pd and Cu foams. Scripta Materialia, 2013, 69, 295-298.	5.2	39
17	Influence of stacking fault energy on twin spacing of Cu and Cu–Al alloys. Scripta Materialia, 2014, 83, 33-36.	5.2	38
18	Sputtered Hf–Ti nanostructures: A segregation and high-temperature stability study. Acta Materialia, 2016, 108, 8-16.	7.9	35

Andrea M Hodge

#	Article	IF	CITATIONS
19	Designing in situ and ex situ bulk metallic glass composites via spark plasma sintering in the super cooled liquid state. Materials and Design, 2016, 93, 26-38.	7.0	35
20	Evaluating sputter deposited metal coatings on 3D printed polymer micro-truss structures. Materials and Design, 2018, 140, 442-450.	7.0	34
21	Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites. Scientific Reports, 2016, 6, 22568.	3.3	27
22	The mobility of growth twins synthesized by sputtering: Tailoring the twin thickness. Acta Materialia, 2016, 109, 142-150.	7.9	27
23	Growth twins in high stacking fault energy metals: Microstructure, texture and twinning. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 687, 93-98.	5.6	27
24	Microstructural deformation in fatigued nanotwinned copper alloys. Acta Materialia, 2018, 144, 138-144.	7.9	26
25	Influence of Twin Thickness and Grain Size on the Tensile Behavior of Fully Nanotwinned CuAl Alloys. Advanced Engineering Materials, 2016, 18, 918-922.	3.5	19
26	Sliding wear behavior of fully nanotwinned Cu alloys. Friction, 2019, 7, 260-267.	6.4	19
27	Development of a heterogeneous nanostructure through abnormal recrystallization of a nanotwinned Ni superalloy. Acta Materialia, 2020, 195, 132-140.	7.9	16
28	Exploring the microstructural evolution of Hf-Ti: From nanometallic multilayers to nanostructures. Scripta Materialia, 2018, 142, 55-60.	5.2	15
29	Exploring the thermal stability of a bimodal nanoscale multilayered system. Scripta Materialia, 2019, 166, 19-23.	5.2	14
30	Optical and Mechanical Characterization of Sputtered AlN/Ag Multilayer Films. Advanced Engineering Materials, 2019, 21, 1801268.	3.5	12
31	A review of coated nano- and micro-lattice materials. Journal of Materials Research, 2021, 36, 3607-3627.	2.6	10
32	Mechanical Properties of an Feâ€Based SAM2×5â€630 Metallic Glass Matrix Composite with Tungsten Particle Additions. Advanced Engineering Materials, 2018, 20, 1800023.	3.5	9
33	Thermally activated microstructural evolution of sputtered nanostructured Mo–Au. Materialia, 2018, 4, 157-165.	2.7	8
34	Tensile behavior of fully nanotwinned alloys with varying stacking fault energies. MRS Communications, 2017, 7, 253-258.	1.8	7
35	Grain boundary evolution of highly nanotwinned alloys: Effect of initial twinned microstructure. Scripta Materialia, 2021, 190, 27-31.	5.2	7
36	Atomistic modeling of physical vapor deposition on complex topology substrates. Computational Materials Science, 2022, 203, 111111.	3.0	7

Andrea M Hodge

#	Article	IF	CITATIONS
37	Synthesis of Nanoporous Gold Tubes. Advanced Engineering Materials, 2016, 18, 65-69.	3.5	5
38	Synthesis and characterization of optically transparent ceramic crystalline/amorphous and amorphous/amorphous multilayers. Scripta Materialia, 2020, 187, 157-162.	5.2	5
39	Phase transformations in the Wâ \in "Cr system at the nanoscale. Materialia, 2018, 2, 190-195.	2.7	4
40	Scalingâ€Up of Nanoâ€Architected Microstructures: A Mechanical Assessment. Advanced Engineering Materials, 2019, 21, 1900687.	3.5	4
41	Coatings for Core–Shell Composite Micro‣attice Structures: Varying Sputtering Parameters. Advanced Engineering Materials, 2022, 24, 2101264.	3.5	4
42	Phase transition zones in compositionally complex alloy films influenced by varying Al and Ti content. Surface and Coatings Technology, 2021, 424, 127651.	4.8	3
43	An Overview of Nano Multilayers as Model Systems for Developing Nanoscale Microstructures. Materials, 2022, 15, 382.	2.9	3
44	Exploring microstructural variations in highly transparent AlN/SiO2 nano multilayers. Optical Materials Express, 2020, 10, 850.	3.0	2
45	Unraveling Thermodynamic and Kinetic Contributions to the Stability of Doped Nanocrystalline Alloys using Nanometallic Multilayers. Advanced Materials, 2022, 34, e2200354.	21.0	2
46	Characterization of Grain Boundaryâ€Engineered Aluminum–Magnesium Alloys. Advanced Engineering Materials, 2021, 23, 2000813.	3.5	0