Michael T Mccoy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1176636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Footshock-Induced Abstinence from Compulsive Methamphetamine Self-administration in Rat Model Is Accompanied by Increased Hippocampal Expression of Cannabinoid Receptors (CB1 and CB2). Molecular Neurobiology, 2022, 59, 1238-1248.	4.0	4
2	Oxycodone self-administration activates the mitogen-activated protein kinase/ mitogen- and stress-activated protein kinase (MAPK-MSK) signaling pathway in the rat dorsal striatum. Scientific Reports, 2021, 11, 2567.	3.3	8
3	Footshockâ€induced abstinence from compulsive methamphetamine selfâ€administration is associated with increased expression of cannabinoid receptors (CB1 and CB2) in the rat hippocampus. FASEB Journal, 2021, 35, .	0.5	0
4	Potassium Channels and Their Potential Roles in Substance Use Disorders. International Journal of Molecular Sciences, 2021, 22, 1249.	4.1	14
5	Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder. Genes, 2021, 12, 1614.	2.4	12
6	Escalated Oxycodone Self-Administration Causes Differential Striatal mRNA Expression of FGFs and IEGs Following Abstinence-Associated Incubation of Oxycodone Craving. Neuroscience, 2019, 415, 173-183.	2.3	32
7	Sex Differences in Escalated Methamphetamine Self-Administration and Altered Gene Expression Associated With Incubation of Methamphetamine Seeking. International Journal of Neuropsychopharmacology, 2019, 22, 710-723.	2.1	38
8	Molecular Adaptations in the Rat Dorsal Striatum and Hippocampus Following Abstinence-Induced Incubation of Drug Seeking After Escalated Oxycodone Self-Administration. Molecular Neurobiology, 2019, 56, 3603-3615.	4.0	39
9	Escalated Oxycodone Self-Administration and Punishment: Differential Expression of Opioid Receptors and Immediate Early Genes in the Rat Dorsal Striatum and Prefrontal Cortex. Frontiers in Neuroscience, 2019, 13, 1392.	2.8	22
10	Selective Activation of Striatal NGF-TrkA/p75NTR/MAPK Intracellular Signaling in Rats That Show Suppression of Methamphetamine Intake 30 Days following Drug Abstinence. International Journal of Neuropsychopharmacology, 2018, 21, 281-290.	2.1	15
11	Methamphetamine Induces TET1- and TET3-Dependent DNA Hydroxymethylation of Crh and Avp Genes in the Rat Nucleus Accumbens. Molecular Neurobiology, 2018, 55, 5154-5166.	4.0	38
12	Compulsive methamphetamine taking under punishment is associated with greater cue-induced drug seeking in rats. Behavioural Brain Research, 2017, 326, 265-271.	2.2	31
13	Compulsive methamphetamine taking in the presence of punishment is associated with increased oxytocin expression in the nucleus accumbens of rats. Scientific Reports, 2017, 7, 8331.	3.3	26
14	Increased expression of proenkephalin and prodynorphin mRNAs in the nucleus accumbens of compulsive methamphetamine taking rats. Scientific Reports, 2016, 6, 37002.	3.3	22
15	An Acute Methamphetamine Injection Downregulates the Expression of Several Histone Deacetylases (HDACs) in the Mouse Nucleus Accumbens: Potential Regulatory Role of HDAC2 Expression. Neurotoxicity Research, 2016, 30, 32-40.	2.7	19
16	CAMKII-conditional deletion of histone deacetylase 2 potentiates acute methamphetamine-induced expression of immediate early genes in the mouse nucleus accumbens. Scientific Reports, 2015, 5, 13396.	3.3	16
17	Incubation of Methamphetamine and Palatable Food Craving after Punishment-Induced Abstinence. Neuropsychopharmacology, 2014, 39, 2008-2016.	5.4	107
18	Methamphetamine Downregulates Striatal Glutamate Receptors via Diverse Epigenetic Mechanisms. Biological Psychiatry, 2014, 76, 47-56.	1.3	109

MICHAEL T MCCOY

#	Article	IF	CITATIONS
19	Differential effects of binge methamphetamine injections on the mRNA expression of histone deacetylases (HDACs) in the rat striatum. NeuroToxicology, 2014, 45, 178-184.	3.0	27
20	Enhanced Upregulation of CRH mRNA Expression in the Nucleus Accumbens of Male Rats after a Second Injection of Methamphetamine Given Thirty Days Later. PLoS ONE, 2014, 9, e84665.	2.5	35
21	Genome-wide profiling identifies a subset of methamphetamine (METH)-induced genes associated with METH-induced increased H4K5Ac binding in the rat striatum. BMC Genomics, 2013, 14, 545.	2.8	43
22	CREB phosphorylation regulates striatal transcriptional responses in the self-administration model of methamphetamine addiction in the rat. Neurobiology of Disease, 2013, 58, 132-143.	4.4	115
23	Methamphetamine Causes Differential Alterations in Gene Expression and Patterns of Histone Acetylation/Hypoacetylation in the Rat Nucleus Accumbens. PLoS ONE, 2012, 7, e34236.	2.5	111
24	Altered Gene Expression in Pulmonary Tissue of Tryptophan Hydroxylase-1 Knockout Mice: Implications for Pulmonary Arterial Hypertension. PLoS ONE, 2011, 6, e17735.	2.5	13
25	Chronic methamphetamine exposure suppresses the striatal expression of members of multiple families of immediate early genes (IEGs) in the rat: normalization by an acute methamphetamine injection. Psychopharmacology, 2011, 215, 353-365.	3.1	47
26	Methamphetamine Preconditioning Causes Differential Changes in Striatal Transcriptional Responses to Large Doses of the Drug. Dose-Response, 2011, 9, dose-response.1.	1.6	25
27	Differential histone modifications induced by chronic methamphetamine exposure in the rat striatum. FASEB Journal, 2011, 25, 896.6.	0.5	Ο
28	Differential effects of methamphetamine and SCH23390 on the expression of members of IEG families of transcription factors in the rat striatum. Brain Research, 2010, 1318, 1-10.	2.2	36
29	Methamphetamine Self-Administration Is Associated with Persistent Biochemical Alterations in Striatal and Cortical Dopaminergic Terminals in the Rat. PLoS ONE, 2010, 5, e8790.	2.5	119
30	Methamphetamine-Induced Dopamine-Independent Alterations in Striatal Gene Expression in the 6-Hydroxydopamine Hemiparkinsonian Rats. PLoS ONE, 2010, 5, e15643.	2.5	25
31	Dopamine D1 Receptors, Regulation of Gene Expression in the Brain, and Neurodegeneration. CNS and Neurological Disorders - Drug Targets, 2010, 9, 526-538.	1.4	90
32	Methamphetamine Preconditioning Alters Midbrain Transcriptional Responses to Methamphetamine-Induced Injury in the Rat Striatum. PLoS ONE, 2009, 4, e7812.	2.5	49
33	Methamphetamine Preconditioning: Differential Protective Effects on Monoaminergic Systems in the Rat Brain. Neurotoxicity Research, 2009, 15, 252-259.	2.7	37
34	Methamphetamine Induces Dopamine D1 Receptor-Dependent Endoplasmic Reticulum Stress-Related Molecular Events in the Rat Striatum. PLoS ONE, 2009, 4, e6092.	2.5	76
35	Serial Analysis of Gene Expression in the Rat Striatum Following Methamphetamine Administration. Annals of the New York Academy of Sciences, 2006, 1074, 13-30.	3.8	7
36	Calcineurin/NFAT-induced up-regulation of the Fas ligand/Fas death pathway is involved in methamphetamine-induced neuronal apoptosis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 868-873.	7.1	208

MICHAEL T MCCOY

#	Article	IF	CITATIONS
37	Methamphetamine Causes Coordinate Regulation of Src, Cas, Crk, and the Jun N-Terminal Kinase–Jun Pathway. Molecular Pharmacology, 2002, 61, 1124-1131.	2.3	63
38	cDNA array analysis of gene expression profiles in the striata of wildâ€ŧype and Cu/Zn superoxide dismutase transgenic mice treated with neurotoxic doses of amphetamine. FASEB Journal, 2002, 16, 1379-1388.	0.5	19
39	Analysis of Ecstasy (MDMA)â€induced transcriptional responses in the rat cortex. FASEB Journal, 2002, 16, 1887-1894.	0.5	31
40	Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology, 2002, 42, 837-845.	4.1	113
41	Distinct gene expression signatures in the striata of wild-type and heterozygous c-fos knockout mice following methamphetamine administration: Evidence from cDNA array analyses. Synapse, 2002, 44, 211-226.	1.2	35
42	Analysis of methamphetamine-induced changes in the expression of integrin family members in the cortex of wild-type and c-fos knockout mice. Neurotoxicity Research, 2002, 4, 617-623.	2.7	5
43	Methamphetamine increases expression of the apoptotic c-myc and l-myc genes in the mouse brain. Molecular Brain Research, 2001, 90, 202-204.	2.3	14
44	Temporal profiling of methamphetamine-induced changes in gene expression in the mouse brain: Evidence from cDNA array. Synapse, 2001, 41, 40-48.	1.2	99
45	Methamphetamine causes differential regulation of proâ€death and antiâ€death Bclâ€⊋ genes in the mouse neocortex. FASEB Journal, 2001, 15, 1745-1752.	0.5	149
46	Dual mechanism of Fas-induced cell death in neuroglioma cells: a role for reactive oxygen species. Molecular Brain Research, 1999, 72, 158-165.	2.3	38
47	VASE-Containing N-CAM Isoforms Are Increased in the Hippocampus in Bipolar Disorder but Not Schizophrenia. Experimental Neurology, 1998, 154, 1-11.	4.1	44
48	Cocaine self-administration alters brain NADH dehydrogenase mRNA levels. NeuroReport, 1997, 8, 2437-2441.	1.2	9
49	Overexpression of superoxide dismutase and catalase in immortalized neural cells: toxic effects of hydrogen peroxide. Brain Research, 1997, 770, 163-168.	2.2	29
50	Species―and Brain Regionâ€5pecific Dopamine Transporters: Immunological and Glycosylation Characteristics. Journal of Neurochemistry, 1996, 66, 2146-2152.	3.9	24
51	Expression of interleukin 2 and the interleukin 2 receptor in aging rats. Cellular Immunology, 1989, 120, 1-9.	3.0	41
52	Abundant alkali-sensitive sites in DNA of human and mouse sperm. Experimental Cell Research, 1989, 184, 461-470.	2.6	246
53	Interleukin 2, interleukin 2 receptor, and interferon-Î ³ synthesis and mRNA expression in phorbol myristate acetate and calcium lonophore A23187-stimulated T cells from elderly humans. Clinical Immunology and Immunopathology, 1989, 53, 297-308.	2.0	71
54	A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 1988, 175, 184-191.	2.6	9,283