Johannes G De Vries

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/117625/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hydroxymethylfurfural, A Versatile Platform Chemical Made from Renewable Resources. Chemical Reviews, 2013, 113, 1499-1597.	47.7	2,380
2	Ligand-free Heck reactions using low Pd-loading. Chemical Communications, 2004, , 1559.	4.1	612
3	Selective Pd-Catalyzed Oxidative Coupling of Anilides with Olefins through Câ^'H Bond Activation at Room Temperature. Journal of the American Chemical Society, 2002, 124, 1586-1587.	13.7	606
4	A unifying mechanism for all high-temperature Heck reactions. The role of palladium colloids and anionic species. Dalton Transactions, 2006, , 421-429.	3.3	594
5	Homeopathic Ligand-Free Palladium as a Catalyst in the Heck Reaction. A Comparison with a Palladacycle. Organic Letters, 2003, 5, 3285-3288.	4.6	536
6	Aromatic Monomers by in Situ Conversion of Reactive Intermediates in the Acid-Catalyzed Depolymerization of Lignin. Journal of the American Chemical Society, 2015, 137, 7456-7467.	13.7	477
7	Highly Enantioselective Rhodium-Catalyzed Hydrogenation with Monodentate Ligands. Journal of the American Chemical Society, 2000, 122, 11539-11540.	13.7	433
8	Caprolactam from Renewable Resources: Catalytic Conversion of 5â€Hydroxymethylfurfural into Caprolactone. Angewandte Chemie - International Edition, 2011, 50, 7083-7087.	13.8	409
9	Asymmetric Hydrogenation Using Monodentate Phosphoramidite Ligands. Accounts of Chemical Research, 2007, 40, 1267-1277.	15.6	369
10	Why Does Industry Not Use Immobilized Transition Metal Complexes as Catalysts?. Advanced Synthesis and Catalysis, 2016, 358, 3-25.	4.3	337
11	The mechanism of the modified Ullmann reaction. Dalton Transactions, 2010, 39, 10338.	3.3	331
12	The Heck reaction in the production of fine chemicals. Canadian Journal of Chemistry, 2001, 79, 1086-1092.	1.1	322
13	Asymmetric homogeneous hydrogenations at scale. Chemical Society Reviews, 2012, 41, 3340.	38.1	321
14	Homogeneous catalysis for the conversion of biomass and biomass-derived platform chemicals. Catalysis Science and Technology, 2014, 4, 1174-1196.	4.1	267
15	Highly Enantioselective Rhodium-Catalyzed Hydrogenation of β-Dehydroamino Acid Derivatives Using Monodentate Phosphoramidites. Journal of the American Chemical Society, 2002, 124, 14552-14553.	13.7	236
16	Ligand-Free Copper-Catalyzed Câ^'S Coupling of Aryl Iodides and Thiols. Journal of Organic Chemistry, 2008, 73, 5625-5628.	3.2	229
17	Advanced Model Compounds for Understanding Acid-Catalyzed Lignin Depolymerization: Identification of Renewable Aromatics and a Lignin-Derived Solvent. Journal of the American Chemical Society, 2016, 138, 8900-8911.	13.7	202
18	PipPhos and MorfPhos:Â Privileged Monodentate Phosphoramidite Ligands for Rhodium-Catalyzed Asymmetric Hydrogenation. Journal of Organic Chemistry, 2005, 70, 943-951.	3.2	194

#	Article	IF	CITATIONS
19	Practical Aspects of Carbonâ^'Carbon Cross-Coupling Reactions Using Heteroarenes. Organic Process Research and Development, 2010, 14, 30-47.	2.7	192
20	Heck Reactions without Salt Formation: Aromatic Carboxylic Anhydrides as Arylating Agents. Angewandte Chemie - International Edition, 1998, 37, 662-664.	13.8	187
21	Title is missing!. Topics in Catalysis, 2002, 19, 111-118.	2.8	184
22	Screening of a Supramolecular Catalyst Library in the Search for Selective Catalysts for the Asymmetric Hydrogenation of a Difficult Enamide Substrate. Angewandte Chemie - International Edition, 2006, 45, 1223-1227.	13.8	184
23	Rhodium-Catalyzed Addition of Arylboronic Acids to Isatins:  An Entry to Diversity in 3-Aryl-3-Hydroxyoxindoles. Organic Letters, 2006, 8, 2715-2718.	4.6	181
24	A Ligand-Library Approach to the Highly Efficient Rhodium/Phosphoramidite-Catalyzed Asymmetric Arylation ofN,N-Dimethylsulfamoyl-Protected Aldimines. Angewandte Chemie - International Edition, 2006, 45, 2789-2791.	13.8	180
25	Application of Monodentate Secondary Phosphine Oxides, a New Class of Chiral Ligands, in Ir(I)-Catalyzed Asymmetric Imine Hydrogenation. Organic Letters, 2003, 5, 1503-1506.	4.6	176
26	Chiral separation by enantioselective liquid–liquid extraction. Organic and Biomolecular Chemistry, 2011, 9, 36-51.	2.8	175
27	Achiral Ligands Dramatically Enhance Rate and Enantioselectivity in the Rh/Phosphoramidite-Catalyzed Hydrogenation of α,β-Disubstituted Unsaturated Acids. Angewandte Chemie - International Edition, 2005, 44, 4209-4212.	13.8	174
28	Improving conversion and enantioselectivity in hydrogenation by combining different monodentate phosphoramidites; a new combinatorial approach in asymmetric catalysisElectronic supplementary information (ESI) available: Experimental details. See http://www.rsc.org/suppdata/ob/b3/b302097e/. Organic and Biomolecular Chemistry, 2003, 1, 1087-1089.	2.8	158
29	Dynamic Kinetic Resolution of Racemic β-Haloalcohols: Direct Access to Enantioenriched Epoxides. Journal of the American Chemical Society, 2008, 130, 13508-13509.	13.7	149
30	Catalytic Approaches to Monomers for Polymers Based on Renewables. ACS Catalysis, 2019, 9, 8012-8067.	11.2	146
31	Phenolic acetals from lignins of varying compositions via iron(<scp>iii</scp>) triflate catalysed depolymerisation. Green Chemistry, 2017, 19, 2774-2782.	9.0	136
32	Iridium/Monodentate Phosphoramidite Catalyzed Asymmetric Hydrogenation of <i>N</i> -Aryl Imines. Journal of the American Chemical Society, 2009, 131, 8358-8359.	13.7	135
33	Platinum-Catalyzed Selective Hydration of Hindered Nitriles and Nitriles with Acid- or Base-Sensitive Groups. Journal of Organic Chemistry, 2004, 69, 2327-2331.	3.2	133
34	The Combinatorial Approach to Asymmetric Hydrogenation: Phosphoramidite Libraries, Ruthenacycles, and Artificial Enzymes. Chemistry - A European Journal, 2006, 12, 4722-4734.	3.3	129
35	Soluble iron nanoparticles as cheap and environmentally benign alkene and alkyne hydrogenation catalysts. Chemical Communications, 2009, , 3747.	4.1	122
36	Fast Palladium Catalyzed Arylation of Alkenes Using Bulky Monodentate Phosphorus Ligands. European Journal of Inorganic Chemistry, 1999, 1999, 1073-1076.	2.0	116

#	Article	IF	CITATIONS
37	Highly Enantioselective Conjugate Additions of Potassium Organotrifluoroborates to Enones by Use of Monodentate Phosphoramidite Ligands. Journal of Organic Chemistry, 2004, 69, 8045-8052.	3.2	115
38	Bulky Monodentate Phosphoramidites in Palladium-Catalyzed Allylic Alkylation Reactions: Aspects of Regioselectivity and Enantioselectivity. Chemistry - A European Journal, 2004, 10, 6232-6246.	3.3	108
39	Platinum catalysed hydrolytic amidation of unactivated nitriles. Tetrahedron Letters, 2000, 41, 2467-2470.	1.4	107
40	Cycloruthenated Primary and Secondary Amines as Efficient Catalyst Precursors for Asymmetric Transfer Hydrogenation. Organic Letters, 2005, 7, 1247-1250.	4.6	106
41	Instant Ligand Libraries. Parallel Synthesis of Monodentate Phosphoramidites and in Situ Screening in Asymmetric Hydrogenation. Organic Letters, 2004, 6, 1733-1735.	4.6	101
42	From 5-Hydroxymethylfurfural (HMF) to Polymer Precursors: Catalyst Screening Studies on the Conversion of 1,2,6-hexanetriol to 1,6-hexanediol. Topics in Catalysis, 2012, 55, 612-619.	2.8	100
43	Asymmetric Synthesis of (<i>S</i>)â€2â€Indolinecarboxylic Acid by Combining Biocatalysis and Homogeneous Catalysis. ChemCatChem, 2011, 3, 289-292.	3.7	99
44	Organocatalytic asymmetric transfer hydrogenation of imines. Catalysis Science and Technology, 2011, 1, 727.	4.1	98
45	Suitable ligands for homogeneous ruthenium-catalyzed hydrogenolysis of esters. Journal of Molecular Catalysis A, 2003, 206, 185-192.	4.8	97
46	Catechol-Based Phosphoramidites:  A New Class of Chiral Ligands for Rhodium-Catalyzed Asymmetric Hydrogenations. Organic Letters, 2004, 6, 1433-1436.	4.6	97
47	Reductions of activated carbonyl compounds with chiral-bridged 1,4-dihydropyridines. An investigation of scope and structural effects. Journal of the American Chemical Society, 1985, 107, 3981-3997.	13.7	92
48	Reactions of Iminium Ions with Michael Acceptors through a Morita–Baylis–Hillman-Type Reaction: Enantiocontrol and Applications in Synthesis. Angewandte Chemie - International Edition, 2007, 46, 1893-1896.	13.8	92
49	Palladium atalyzed Asymmetric Quaternary Stereocenter Formation. Chemistry - A European Journal, 2012, 18, 6907-6914.	3.3	92
50	Aromatic Amination of Aryl Bromides Catalysed by Copper/Î ² -Diketone Catalysts: The Effect of Concentration. Synlett, 2006, 2006, 3105-3109.	1.8	90
51	Pd–NHC Catalyzed Conjugate Addition versus the Mizoroki–Heck Reaction. Chemistry - A European Journal, 2011, 17, 3091-3095.	3.3	90
52	Merging homogeneous catalysis with biocatalysis; papain as hydrogenation catalyst. Chemical Communications, 2005, , 5656.	4.1	89
53	Aminoarenethiolateâ^'Copper(I)-Catalyzed Amination of Aryl Bromides. Organic Letters, 2005, 7, 5241-5244.	4.6	89
54	At the frontier between heterogeneous and homogeneous catalysis: hydrogenation of olefins and alkynes with soluble iron nanoparticles. Dalton Transactions, 2010, 39, 8464.	3.3	89

#	Article	IF	CITATIONS
55	Rh-Catalyzed Asymmetric Hydrogenation of Prochiral Olefins with a Dynamic Library of Chiral TROPOS Phosphorus Ligands. Chemistry - A European Journal, 2005, 11, 6701-6717.	3.3	86
56	Improving enantioselectivity by using a mono-sulphonated diphosphine as ligand for homogeneous imine hydrogenation. Tetrahedron: Asymmetry, 1992, 3, 235-238.	1.8	84
57	Rate Enhancement by Ethylene in the Ru-Catalyzed Ring-Closing Metathesis of Enynes: Evidence for an "Ene-then-Yne―Pathway that Diverts through a Second Catalytic Cycle. Angewandte Chemie - International Edition, 2005, 44, 7442-7447.	13.8	84
58	Rhodium/phosphoramidite-catalyzed asymmetric arylation of aldehydes with arylboronic acids. Organic and Biomolecular Chemistry, 2006, 4, 773.	2.8	84
59	Experimental and modeling studies on the enantio-separation of 3,5-dinitrobenzoyl-(R),(S)-leucine by continuous liquid–liquid extraction in a cascade of centrifugal contactor separators. Chemical Engineering Science, 2010, 65, 4682-4690.	3.8	84
60	Metal Triflates for the Production of Aromatics from Lignin. ChemSusChem, 2016, 9, 2974-2981.	6.8	82
61	High Enantioselectivity Is Induced by a Single Monodentate Phosphoramidite Ligand in Iridium-Catalyzed Asymmetric Hydrogenation. Angewandte Chemie - International Edition, 2007, 46, 1497-1500.	13.8	80
62	A Mixed-Ligand Approach Enables the Asymmetric Hydrogenation of an α-Isopropylcinnamic Acid en Route to the Renin Inhibitor Aliskiren. Organic Process Research and Development, 2007, 11, 585-591.	2.7	79
63	Catalytic Regioselective Oxidation of Glycosides. Angewandte Chemie - International Edition, 2013, 52, 7809-7812.	13.8	79
64	Mono- versus Bidentate Ligands in Rhodium-Catalyzed Asymmetric Hydrogenation. A Comparative Rate Study. Organic Letters, 2003, 5, 475-478.	4.6	76
65	Enantioselective Rh-Catalyzed Hydrogenation of Enol Acetates and Enol Carbamates with Monodentate Phosphoramidites. Organic Letters, 2005, 7, 4177-4180.	4.6	75
66	Chiral Separation of Underivatized Amino Acids by Reactive Extraction with Palladiumâ^'BINAP Complexes. Journal of Organic Chemistry, 2009, 74, 6526-6533.	3.2	75
67	Ligand-free copper(I) catalyzed N- and O-arylation of aryl halides. Tetrahedron Letters, 2007, 48, 7366-7370.	1.4	71
68	Scalable Enantioseparation of Amino Acid Derivatives Using Continuous Liquidâ^'Liquid Extraction in a Cascade of Centrifugal Contactor Separators. Organic Process Research and Development, 2009, 13, 911-914.	2.7	71
69	Amino Alcohol Coordination in Ruthenium(II)-Catalysed Asymmetric Transfer Hydrogenation of Ketones. European Journal of Inorganic Chemistry, 1999, 1999, 2335-2341.	2.0	70
70	A Practical Approach to the Resolution of RacemicN-Benzyl α-Amino Acids by Liquid–Liquid Extraction with a Lipophilic Chiral Salen–Cobalt(III) Complex. Angewandte Chemie - International Edition, 2006, 45, 2449-2453.	13.8	70
71	Cyclometalated Complexes of Ruthenium, Rhodium and Iridium as Catalysts for Transfer Hydrogenation of Ketones and Imines. Advanced Synthesis and Catalysis, 2011, 353, 2844-2852.	4.3	70
72	The application of monodentate secondary phosphine oxide ligands in rhodium- and iridium-catalyzed asymmetric hydrogenation. Tetrahedron: Asymmetry, 2004, 15, 2223-2229.	1.8	69

#	Article	IF	CITATIONS
73	Catalyst studies on the ring opening of tetrahydrofuran–dimethanol to 1,2,6-hexanetriol. Catalysis Today, 2013, 210, 106-116.	4.4	67
74	Baseâ€Free Iron Catalyzed Transfer Hydrogenation of Esters Using EtOH as Hydrogen Source. Angewandte Chemie - International Edition, 2019, 58, 1129-1133.	13.8	67
75	Reduction of aldehydes and ketones by sodium dithionite. Journal of Organic Chemistry, 1980, 45, 4126-4129.	3.2	66
76	Enantioselective Synthesis of 2-Aryl-4-piperidones via Rhodium/Phosphoramidite-Catalyzed Conjugate Addition of Arylboroxines. Organic Letters, 2005, 7, 2433-2435.	4.6	66
77	Asymmetric hydrogenation of 2-substituted N-protected-indoles catalyzed by rhodium complexes of BINOL-derived phosphoramidites. Tetrahedron: Asymmetry, 2010, 21, 7-10.	1.8	66
78	Simultaneous iridium catalysed oxidation and enzymatic reduction employing orthogonal reagents. Chemical Communications, 2010, 46, 8046.	4.1	65
79	Enantioselective Transport by a Steroidal Guanidinium Receptor. Chemistry - A European Journal, 2002, 8, 2931.	3.3	64
80	Enantioselective Rh-Catalyzed Hydrogenation ofN-Formyl Dehydroamino Esters with Monodentate Phosphoramidite Ligands. Journal of Organic Chemistry, 2006, 71, 2026-2036.	3.2	63
81	Enantioselective synthesis of β2-amino acids using rhodium-catalyzed hydrogenation. Organic and Biomolecular Chemistry, 2007, 5, 267-275.	2.8	60
82	Fast Racemisation of Chiral Amines and Alcohols by Using Cationic Halfâ€Sandwich Ruthena―and Iridacycle Catalysts. Chemistry - A European Journal, 2009, 15, 12780-12790.	3.3	60
83	Bio-based building blocks from 5-hydroxymethylfurfural <i>via</i> 1-hydroxyhexane-2,5-dione as intermediate. Chemical Science, 2019, 10, 6024-6034.	7.4	59
84	Homogeneous and heterogeneous catalysis in industry. Catalysis Science and Technology, 2012, 2, 2009.	4.1	58
85	Chiral (Cyclopentadienone)iron Complexes for the Catalytic Asymmetric Hydrogenation of Ketones. European Journal of Organic Chemistry, 2015, 2015, 1887-1893.	2.4	56
86	Ligand-free palladium catalysed Heck reaction of methyl 2-acetamido acrylate and aryl bromides as key step in the synthesis of enantiopure substituted phenylalanines. Journal of Organometallic Chemistry, 2003, 687, 494-497.	1.8	54
87	Enantioselective Intramolecular Reductive Heck Reaction with a Palladium/Monodentate Phosphoramidite Catalyst. ChemCatChem, 2017, 9, 551-554.	3.7	54
88	Hydration of nitriles using a metal–ligand cooperative ruthenium pincer catalyst. Chemical Science, 2019, 10, 10647-10652.	7.4	54
89	Highly efficient enantioselective epoxidation of α,β-enones catalyzed by cheap chiral lanthanum and gadolinium alkoxides. Tetrahedron, 2001, 57, 9837-9842.	1.9	52
90	Aminoarenethiolato-copper(I) as (pre-)catalyst for the synthesis of diaryl ethers from aryl bromides and sequential C–O/C–S and C–N/C–S cross coupling reactions. Tetrahedron, 2010, 66, 9009-9020.	1.9	52

#	Article	IF	CITATIONS
91	Palladium-Catalysed Coupling Reactions. Topics in Organometallic Chemistry, 2012, , 1-34.	0.7	52
92	Continuous Separation of Racemic 3,5â€Ðinitrobenzoylâ€Amino Acids in a Centrifugal Contact Separator with the Aid of Cinchonaâ€Based Chiral Host Compounds. Chemistry - A European Journal, 2009, 15, 2111-2120.	3.3	51
93	Combining Designer Cells and Click Chemistry for a Oneâ€Pot Fourâ€6tep Preparation of Enantiopure βâ€Hydroxytriazoles. Advanced Synthesis and Catalysis, 2010, 352, 2111-2115.	4.3	51
94	New insights into the catalytic cleavage of the lignin β-O-4 linkage in multifunctional ionic liquid media. Catalysis Science and Technology, 2016, 6, 1882-1891.	4.1	50
95	Removal of the acyl donor residue allows the use of simple alkyl esters as acyl donors for the dynamic kinetic resolution of secondary alcohols. Tetrahedron: Asymmetry, 2005, 16, 1603-1610.	1.8	49
96	Synthesis of Solution-Phase Phosphoramidite and Phosphite Ligand Libraries and Their In Situ Screening in the Rhodium-Catalyzed Asymmetric Addition of Arylboronic Acids. ACS Combinatorial Science, 2007, 9, 407-414.	3.3	49
97	Influence of degree of sulfonation of BDPP upon enantioselectivity in rhodium-BDPP catalyzed hydrogenation reactions in a two phase system. Journal of Molecular Catalysis A, 1997, 116, 199-207.	4.8	48
98	A Metal–Ligand Cooperative Pathway for Intermolecular Oxaâ€Michael Additions to Unsaturated Nitriles. Angewandte Chemie - International Edition, 2015, 54, 4236-4240.	13.8	48
99	Synthesis of enantiopure chloroalcohols by enzymatic kinetic resolution. Organic and Biomolecular Chemistry, 2007, 5, 318-323.	2.8	47
100	Elucidating the Mechanism of the Asymmetric Aza-Michael Reaction. Chemistry - A European Journal, 2007, 13, 4602-4613.	3.3	47
101	Cyclopentanone Derivatives from 5â€Hydroxymethylfurfural via 1â€Hydroxyhexaneâ€2,5â€dione as Intermediate. ChemSusChem, 2018, 11, 356-359.	6.8	47
102	Transfer hydrogenation of cyclic carbonates and polycarbonate to methanol and diols by iron pincer catalysts. Green Chemistry, 2019, 21, 5248-5255.	9.0	46
103	Synthesis of (<i>R</i>)â€BINOLâ€Derived (Cyclopentadienone)iron Complexes and Their Application in the Catalytic Asymmetric Hydrogenation of Ketones. European Journal of Organic Chemistry, 2015, 2015, 5526-5536.	2.4	45
104	Asymmetric epoxidation of \hat{l}_{\pm}, \hat{l}^2 -unsaturated ketones catalyzed by chiral ytterbium complexes. Tetrahedron Letters, 2001, 42, 6919-6921.	1.4	44
105	Parallel Synthesis and Screening of Polymerâ€Supported Phosphorusâ€Stereogenic Aminophosphane–Phosphite and –Phosphinite Ligands. Angewandte Chemie - International Edition, 2008, 47, 6602-6605.	13.8	44
106	Metal-catalysed selective transfer hydrogenation of $\hat{I}\pm,\hat{I}^2$ -unsaturated carbonyl compounds to allylic alcohols. Green Chemistry, 2020, 22, 3323-3357.	9.0	44
107	Chiral separation of substituted phenylalanine analogues using chiral palladium phosphine complexes with enantioselective liquid–liquid extraction. Organic and Biomolecular Chemistry, 2010, 8, 3045.	2.8	42
108	Palladium(0)/NHC atalyzed Reductive Heck Reaction of Enones: A Detailed Mechanistic Study. Chemistry - A European Journal, 2015, 21, 18811-18820.	3.3	42

#	Article	IF	CITATIONS
109	Synthesis of Pt compounds containing chiral (2S,4S) -pentane-2,4-diyl-bis(5H-dibenzo[b]phosphindole) as ligand and their use in asymmetric hydroformylation of styrene derivatives. Journal of Organometallic Chemistry, 1997, 540, 15-25.	1.8	41
110	Recent developments in asymmetric hydroformylation. Catalysis Science and Technology, 2021, 11, 5388-5411.	4.1	41
111	Selective Hydrogenation of α,βâ€Unsaturated Aldehydes and Ketones by Air‣table Ruthenium NNS Complexes. Chemistry - A European Journal, 2017, 23, 8473-8481.	3.3	40
112	Alkene Isomerisation Catalysed by a Ruthenium PNN Pincer Complex. Chemistry - A European Journal, 2014, 20, 15434-15442.	3.3	39
113	Catalytic Conversion of Renewable Resources into Bulk and Fine Chemicals. Chemical Record, 2016, 16, 2787-2800.	5.8	39
114	Enantioselective liquid–liquid extraction of (R,S)-phenylglycinol using a bisnaphthyl phosphoric acid derivative as chiral extractant. Tetrahedron, 2011, 67, 462-470.	1.9	38
115	Isomerization of Allylic Alcohols to Ketones Catalyzed by Wellâ€Defined Iron PNP Pincer Catalysts. Chemistry - A European Journal, 2018, 24, 4043-4049.	3.3	38
116	Twoâ€Phase (Bio)Catalytic Reactions in a Tableâ€Top Centrifugal Contact Separator. Angewandte Chemie - International Edition, 2008, 47, 3905-3908.	13.8	37
117	Efficient preparation of an N-aryl β-amino acid via asymmetric hydrogenation and direct asymmetric reductive amination en route to Ezetimibe. Tetrahedron: Asymmetry, 2010, 21, 1709-1714.	1.8	37
118	Selective Conversion of Polyenes to Monoenes by RuCl ₃ atalyzed Transfer Hydrogenation: The Case of Cashew Nutshell Liquid. ChemSusChem, 2012, 5, 2427-2434.	6.8	37
119	Biocatalytic oxidation of benzyl alcohol to benzaldehyde via hydrogen transfer. Tetrahedron, 2009, 65, 6805-6809.	1.9	36
120	Ruthenacycles and Iridacycles as Catalysts for Asymmetric Transfer Hydrogenation and Racemisation. Topics in Catalysis, 2010, 53, 1002-1008.	2.8	35
121	Selective Baseâ€free Transfer Hydrogenation of α,βâ€Unsaturated Carbonyl Compounds using <i>i</i> PrOH or EtOH as Hydrogen Source. Chemistry - A European Journal, 2018, 24, 2725-2734.	3.3	34
122	Diastereoselective hydrogenation and kinetic resolution of imines using rhodium/diphosphine catalyzed hydrogenation Tetrahedron: Asymmetry, 1993, 4, 215-222.	1.8	33
123	Properties of Novel Polyesters Made from Renewable 1,4â€Pentanediol. ChemSusChem, 2020, 13, 556-563.	6.8	33
124	Asymmetric imine isomerisation in the enantioselective synthesis of chiral amines from prochiral ketones. Tetrahedron Letters, 1995, 36, 3917-3920.	1.4	32
125	A Suzuki Coupling Based Route to 2,2'-Bis(2-indenyl)biphenyl Derivatives. Journal of Organic Chemistry, 2002, 67, 169-176.	3.2	32
126	Synthesis and application in asymmetric C–C bond formation of solution phase ligand libraries of monodentate phosphoramidites. Organic and Biomolecular Chemistry, 2004, 2, 1682-1684.	2.8	32

#	Article	IF	CITATIONS
127	Kinetic Studies on the Asymmetric Transfer Hydrogenation of Acetophenone Using a Homogeneous Ruthenium Catalyst with a Chiral Amino-Alcohol Ligand. Organic Process Research and Development, 2006, 10, 423-429.	2.7	32
128	Supported Chiral Monodentate Ligands in Rhodiumâ€Catalysed Asymmetric Hydrogenation and Palladiumâ€Catalysed Asymmetric Allylic Alkylation. European Journal of Organic Chemistry, 2009, 2009, 5796-5803.	2.4	32
129	Ruthenium/1,1′â€Bis(diphenylphosphino)ferroceneâ€Catalysed Oppenauer Oxidation of Alcohols and Lactonisation of α,ï‰â€Diols using Methyl Isobutyl Ketone as Oxidant. Advanced Synthesis and Catalysis, 2013, 355, 2839-2844.	4.3	32
130	(S)-3,3-dimethyl-1,2,4-butanetriol as ligand for titanium catalysed asymmetric silylcyanation. Tetrahedron: Asymmetry, 1993, 4, 185-188.	1.8	31
131	Phosphoramidite-Controlled Asymmetric Hydrogenation with Rhodium Catalysts. Platinum Metals Review, 2006, 50, 54-63.	1.2	31
132	Total synthesis of the novel coenyzme methoxatin. Journal of Organic Chemistry, 1985, 50, 1688-1695.	3.2	29
133	Influence of Phosphoramidites in Copper-Catalyzed Conjugate Borylation Reaction. Organometallics, 2012, 31, 7855-7861.	2.3	29
134	Design, Testing and Kinetic Analysis of Bulky Monodentate Phosphorus Ligands in the Mizoroki–Heck Reaction. European Journal of Inorganic Chemistry, 2012, 2012, 1660-1671.	2.0	29
135	Asymmetric Hydrogenation of 3â€Substituted Pyridinium Salts. Chemistry - A European Journal, 2016, 22, 9528-9532.	3.3	29
136	Metal–ligand cooperative activation of nitriles by a ruthenium complex with a de-aromatized PNN pincer ligand. Dalton Transactions, 2016, 45, 16033-16039.	3.3	27
137	Expanding the Catalytic Scope of (Cyclopentadienone)iron Complexes to the Hydrogenation of Activated Esters to Alcohols. ChemCatChem, 2016, 8, 3431-3435.	3.7	27
138	Extraction of Lignin with High β-O-4 Content by Mild Ethanol Extraction and Its Effect on the Depolymerization Yield. Journal of Visualized Experiments, 2019, , .	0.3	27
139	Efficient asymmetric hydrogenation with rhodium complexes of C1-symmetric 2,5-dimethylphospholane-diphenylphosphines. Dalton Transactions, 2004, , 1901.	3.3	26
140	Enantiomerically pure β-phenylalanine analogues from α–β-phenylalanine mixtures in a single reactive extraction step. Chemical Communications, 2010, 46, 901-903.	4.1	26
141	Catalytic Asymmetric Reduction of a 3,4-Dihydroisoquinoline for the Large-Scale Production of Almorexant: Hydrogenation or Transfer Hydrogenation?. Organic Process Research and Development, 2013, 17, 1531-1539.	2.7	26
142	Efficient Synthesis of Biomassâ€Derived N‣ubstituted 2â€Hydroxymethylâ€5â€Methylâ€Pyrroles in Two Steps from 5â€Hydroxymethylfurfural. European Journal of Organic Chemistry, 2018, 2018, 2009-2012.	2.4	26
143	NMR measurements and semi-empirical calculations in a first approach to elucidate the mechanism of enantioselective cyanohydrin formation catalysed by cyclo-(S)-Phe-(S)-His. Tetrahedron: Asymmetry, 1992, 3, 401-414.	1.8	25
144	Preparation ofd,l-Phenylalanine by Amidocarbonylation of Benzyl Chloride. Journal of Organic Chemistry, 1996, 61, 1842-1846.	3.2	25

#	Article	IF	CITATIONS
145	Cycloruthenated compounds as efficient catalyst for asymmetric hydride transfer reaction. Pure and Applied Chemistry, 2006, 78, 457-462.	1.9	25
146	Solid-Phase Parallel Synthesis of Phosphite Ligands. Organic Letters, 2008, 10, 989-992.	4.6	25
147	Unravelling the Reaction Path of Rhodium–MonoPhosâ€Catalysed Olefin Hydrogenation. Chemistry - A European Journal, 2011, 17, 12683-12695.	3.3	25
148	Deuteration enhances catalyst lifetime in palladium-catalysed alcohol oxidation. Chemical Communications, 2016, 52, 2189-2191.	4.1	25
149	Inexpensive Ruthenium NNSâ€Complexes as Efficient Ester Hydrogenation Catalysts with High C=O vs. C=C Selectivities. Advanced Synthesis and Catalysis, 2018, 360, 1151-1158.	4.3	25
150	Rapid Identification of a Scalable Catalyst for the Asymmetric Hydrogenation of a Sterically Demanding Aryl Enamide. Organic Process Research and Development, 2010, 14, 568-573.	2.7	24
151	3,3′â€diarylâ€BINOL phosphoric acids as enantioselective extractants of benzylic primary amines. Chirality, 2011, 23, 34-43.	2.6	24
152	Palladium(II) Acetate Catalyzed Reductive Heck Reaction of Enones; A Practical Approach. ChemCatChem, 2015, 7, 3923-3927.	3.7	24
153	Exploring the Selective Demethylation of Aryl Methyl Ethers with a <i>Pseudomonas</i> Rieske Monooxygenase. ChemBioChem, 2019, 20, 118-125.	2.6	24
154	Asymmetric hydrogenation of alkyl(vinyl)thioethers: a promising approach to α-chiral thioethers. Tetrahedron: Asymmetry, 2007, 18, 2849-2858.	1.8	23
155	C–N Coupling of nitrogen nucleophiles with aryl and heteroaryl bromides using aminoarenethiolato–copper(l) (pre-)catalyst. Tetrahedron, 2010, 66, 3478-3484.	1.9	23
156	Nylon Intermediates from Bioâ€Based Levulinic Acid. Angewandte Chemie - International Edition, 2019, 58, 3486-3490.	13.8	22
157	Improvement in the Palladium-Catalyzed Miyaura Borylation Reaction by Optimization of the Base: Scope and Mechanistic Study. Journal of Organic Chemistry, 2021, 86, 103-109.	3.2	22
158	Ruthenium catalysed redox transformation of cinnamaldehyde to 3-phenylpropionic acid and methyl ester. Tetrahedron Letters, 1998, 39, 8329-8332.	1.4	21
159	Ruthenacycles and Iridacycles as Transfer Hydrogenation Catalysts. Molecules, 2021, 26, 4076.	3.8	21
160	Rhenium-catalyzed deoxydehydration of renewable triols derived from sugars. Green Chemistry, 2018, 20, 4433-4437.	9.0	20
161	Importance of the Reducing Agent in Direct Reductive Heck Reactions. ChemCatChem, 2018, 10, 266-272.	3.7	19
162	HMF–glycerol acetals as additives for the debonding of polyurethane adhesives. Green Chemistry, 2021, 23, 957-965.	9.0	19

#	Article	IF	CITATIONS
163	Twenty-Five Years of Homogeneous Catalysis for the Production of Bulk and Fine Chemicals: A Personal Account. Topics in Catalysis, 2014, 57, 1306-1317.	2.8	18
164	Enantio- and diastereoselective synthesis of Î ³ -amino alcohols. Chemical Communications, 2015, 51, 14462-14464.	4.1	18
168	A Mixed Ligand Approach for the Asymmetric Hydrogenation of 2â€Substituted Pyridinium Salts. Advanced Synthesis and Catalysis, 2016, 358, 2589-2593.	4.3	18
160	Highly Selective Hydroformylation of the Cinchona Alkaloids. Journal of Organic Chemistry, 2002, 67, 5022-5024.	3.2	17
167	Palladiumâ€catalyzed allylation of αâ€hydroxy acids. Recueil Des Travaux Chimiques Des Pays-Bas, 1992, 111, 129-137.	0.0	17
168	Highly efficient enantioselective liquid–liquid extraction of 1,2-amino-alcohols using SPINOL based phosphoric acid hosts. Chemical Science, 2017, 8, 6409-6418.	7.4	17
169	9 Hydrogenation of Polyesters to Polyether Polyols. ChemSusChem, 2019, 12, 4082-4087.	6.8	17
170	Regiodivergent Reductive Opening of Epoxides by Catalytic Hydrogenation Promoted by a (Cyclopentadienone)iron Complex. ACS Catalysis, 2022, 12, 235-246.	11.2	17
171	Synthesis of Renewable Fineâ€Chemical Building Blocks by Reductive Coupling between Furfural Derivatives and Terpenes. ChemSusChem, 2013, 6, 1631-1635.	6.8	16
172	Assisted Tandem Catalysis: Metathesis Followed by Asymmetric Hydrogenation from a Single Ruthenium Source. Advanced Synthesis and Catalysis, 2015, 357, 2223-2228.	4.3	16
178	Green Syntheses of Heterocycles of Industrial Importance. 5-Hydroxymethylfurfural as a Platform Chemical. Advances in Heterocyclic Chemistry, 2017, , 247-293.	1.7	16
174	Allosteric effects in asymmetric hydrogenation catalysis? Asymmetric induction as a function of the substrate and the backbone flexibility of C1-symmetric diphosphines in rhodium-catalysed hydrogenations. Dalton Transactions, 2006, , 4821.	3.3	15
175	Methylaluminoxane as an Alternative for BArF in the Iridiumâ€Catalyzed Asymmetric Hydrogenation of Imines. ChemCatChem, 2011, 3, 1139-1142.	3.7	15
176	Synthesis, characterization and catalytic activity of novel ruthenium complexes bearing NNN click based ligands. Dalton Transactions, 2019, 48, 13580-13588.	3.3	15
177	, When Does Catalysis with Transition Metal Complexes Turn into Catalysis by Nanoparticles?. , 2011, , 73-103.		14
178	Use of the Trost Ligand in the Ruthenium atalyzed Asymmetric Hydrogenation of Ketones. ChemCatChem, 2017, 9, 3125-3130.	3.7	14
179	Proof of concept for continuous enantioselective liquid–liquid extraction in capillary microreactors using 1-octanol as a sustainable solvent. Green Chemistry, 2017, 19, 4334-4343.	9.0	14
180	Oxaâ€Michael Addition to α,βâ€Unsaturated Nitriles: An Expedient Route to γâ€Amino Alcohols and Derivatives. ChemCatChem, 2018, 10, 2868-2872.	3.7	14

11

#	Article	IF	CITATIONS
181	Manganese PNP-pincer catalyzed isomerization of allylic/homo-allylic alcohols to ketones – activity, selectivity, efficiency. Catalysis Science and Technology, 2019, 9, 6327-6334.	4.1	14
182	Synthesis of 3-aminoalkyl substituted carbapenems via a phosphorane intermediate. Tetrahedron Letters, 1985, 26, 2765-2768.	1.4	13
183	Conversion of benzoin into 9,10-phenanthrenequinone by photocyclisation. Journal of the Chemical Society Chemical Communications, 1988, , 1172.	2.0	13
184	Synthesis of N-phenyl β-amino acids via iridium-catalyzed asymmetric hydrogenation using mixed monodentate ligands. Tetrahedron: Asymmetry, 2011, 22, 36-39.	1.8	13
185	Chemical upcycling ofpolymers. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200341.	3.4	13
186	Asymmetric catalytic epoxidation of enones by chiral binaphtholâ€derived lanthanum catalyst. Chinese Journal of Chemistry, 2001, 19, 1225-1231.	4.9	12
187	The Use of <i>N</i> â€Type Ligands in the Enantioselective Liquid–Liquid Extraction of Underivatized Amino Acids. European Journal of Organic Chemistry, 2010, 2010, 5197-5202.	2.4	11
188	Baseâ€Free Iron Catalyzed Transfer Hydrogenation of Esters Using EtOH as Hydrogen Source. Angewandte Chemie, 2019, 131, 1141-1145.	2.0	11
189	Gas Phase Hydrogenation of Levulinic Acid to γ-Valerolactone. Catalysis Letters, 2016, 146, 28-34.	2.6	10
190	Scalable synthesis and polymerisation of a β-angelica lactone derived monomer. Green Chemistry, 2020, 22, 5267-5273.	9.0	10
191	Betti base derived <i>P</i> -stereogenic phosphine-diamidophosphite ligands with a single atom spacer and their application in asymmetric catalysis. Catalysis Science and Technology, 2022, 12, 1392-1399.	4.1	10
192	Ruthenium atalysed Hydrogenation of Aromatic Ketones using Monodentate Phosphoramidite Ligands. Advanced Synthesis and Catalysis, 2010, 352, 2621-2628.	4.3	9
193	Efficient Formation of Benzylic Quaternary Centers via Palladium Catalysis. ChemSusChem, 2013, 6, 1636-1639.	6.8	9
194	Additiveâ€Free Isomerization of Allylic Alcohols to Ketones with a Cobalt PNP Pincer Catalyst. Chemistry - A European Journal, 2019, 25, 7820-7825.	3.3	9
195	Synthesis of carbapenems with carbon substituents at C-3 using a wittig approach. Tetrahedron Letters, 1984, 25, 5989-5992.	1.4	8
196	Asymmetric Transfer Hydrogenation of Ketones with Modified Grubbs Metathesis Catalysts: On the Way to a Tandem Process. Advanced Synthesis and Catalysis, 2016, 358, 515-519.	4.3	8
197	Phosphine-free cobalt catalyst precursors for the selective hydrogenation of olefins. Catalysis Science and Technology, 2019, 9, 61-64.	4.1	8
198	Highly Efficient and Atom Economic Route for the Production of Methyl Acrylate and Acetic Acid from a Biorefinery Side Stream. ACS Sustainable Chemistry and Engineering, 2020, 8, 1705-1708.	6.7	8

#	Article	IF	CITATIONS
199	Fast Palladium Catalyzed Arylation of Alkenes Using Bulky Monodentate Phosphorus Ligands. European Journal of Inorganic Chemistry, 1999, 1999, 1073-1076.	2.0	8
200	Conversion of Biomass-Derived Methyl Levulinate to Methyl Vinyl Ketone. ACS Sustainable Chemistry and Engineering, 2022, 10, 766-775.	6.7	8
201	Under Pressure: Rapid Development of Scalable Asymmetric Hydrogenation Catalysts. Topics in Catalysis, 2010, 53, 1081-1086.	2.8	7
202	Development of Asymmetric Hydrogenation Catalysts via High Throughput Experimentation. Oil and Gas Science and Technology, 2013, 68, 519-528.	1.4	7
203	Ruthenium Complexes with PNN Pincer Ligands Based on (Chiral) Pyrrolidines: Synthesis, Structure, and Dynamic Stereochemistry. Organometallics, 2020, 39, 544-555.	2.3	7
204	Highly Efficient and Robust Enantioselective Liquid–Liquid Extraction of 1,2â€Amino Alcohols utilizing VAPOL―and VANOLâ€based Phosphoric Acid Hosts. ChemSusChem, 2018, 11, 178-184.	6.8	6
205	Co-Oligomers of Renewable and "Inert―2-MeTHF and Propylene Oxide for Use in Bio-Based Adhesives. ACS Sustainable Chemistry and Engineering, 2020, 8, 13467-13480.	6.7	6
206	Synthesis of α-keto aldehydes <i>via</i> selective Cu(<scp>i</scp>)-catalyzed oxidation of α-hydroxy ketones. Chemical Communications, 2022, 58, 4639-4642.	4.1	6
207	A Simple and Effective Co atalyst for Ring losing Enyne Metathesis Using Grubbsâ€I type Catalysts: A Practical Alternative to "Mori's Conditions― Chemistry - A European Journal, 2010, 16, 9449-9452.	3.3	5
208	Long-chain α–ω diols from renewable fatty acids via tandem olefin metathesis–ester hydrogenation. Green Chemistry, 2017, 19, 1678-1684.	9.0	5
209	A Simple Synthetic Route to [Rh(acac)(CO)(NHC)] Complexes: Ligand Property Diagnostic Tools and Precatalysts. European Journal of Inorganic Chemistry, 2021, 2021, 3506-3511.	2.0	5
210	Asymmetric Olefin Hydrogenation Using Monodentate BINOL- and Bisphenol-Based Ligands. , 2005, , 269-286.		5
211	An Affordable Catalyst for the Production of Amino Acids. ACS Symposium Series, 2004, , 115-129.	0.5	4
212	Nylon Intermediates from Bioâ€Based Levulinic Acid. Angewandte Chemie, 2019, 131, 3524-3528.	2.0	3
213	Hydrogenative depolymerization of silicon-modified polyureas. Chemical Communications, 2022, 58, 5415-5418.	4.1	3
214	Rhodium-Catalysed Hydrogenations Using Monodentate Ligands. Topics in Organometallic Chemistry, 2017, , 231-261.	0.7	2
215	Ozonolysis of α-angelica lactone: a renewable route to malonates. Chemical Communications, 2021, 57, 10524-10527.	4.1	2
216	Homogenous Iridium Catalysts for Biomass Conversion. Topics in Organometallic Chemistry, 2020, , 341-395.	0.7	2

#	Article	IF	CITATIONS
217	Use of Iridium atalyzed Transfer Vinylation for the Synthesis of Bioâ€Based (bis)â€Vinyl Ethers. Advanced Synthesis and Catalysis, 0, , .	4.3	2
218	The Power of High-Throughput Experimentation in Homogeneous Catalysis Research for Fine Chemicals. ChemInform, 2003, 34, no.	0.0	1
219	Selective Transfer Hydrogenation of $\hat{1}\pm,\hat{I}^2$ -Unsaturated Carbonyl Compounds. Topics in Organometallic Chemistry, 2018, , 193-224.	0.7	1
220	Selective αâ€Đeuteration of Cinnamonitriles using D ₂ O as Deuterium Source. Advanced Synthesis and Catalysis, 0, , .	4.3	1
221	Making chemicals from lignin. Chem Catalysis, 2021, 1, 1360-1362.	6.1	1
222	Photoaffinity labelling of bradykinin receptors on NG108–15 hybrid cells. Biochemical Society Transactions, 1987, 15, 890-891.	3.4	0
223	Highly Enantioselective Rhodium-Catalyzed Hydrogenation of β-Dehydroamino Acid Derivatives Using Monodentate Phosphoramidites ChemInform, 2003, 34, no.	0.0	0
224	Homeopathic Ligand-Free Palladium as a Catalyst in the Heck Reaction. A Comparison with a Palladacycle ChemInform, 2003, 34, no.	0.0	0
225	A detailed study of the diastereoselective catalytic hydrogenation of 6-hydroxytetrahydroisoquinoline-(3R)-carboxylic ester intermediates. Catalysis Science and Technology, 2012, 2, 2077.	4.1	0
226	Catalytic Conversion of Nitriles by Metal Pincer Complexes. Topics in Organometallic Chemistry, 2020, , 321.	0.7	0
227	The solvent determines the product in the hydrogenation of aromatic ketones using unligated RhCl ₃ as catalvst precursor. Catalvsis Science and Technology, 2021, 11, 7608-7616.	4.1	0