
Christof Rampitsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11762361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Secretome Analysis of Clavibacter nebraskensis Strains Treated with Natural Xylem Sap In Vitro Predicts Involvement of Glycosyl Hydrolases and Proteases in Bacterial Aggressiveness. Proteomes, 2021, 9, 1.	3.5	9
2	Misoprostol treatment prevents hypoxia-induced cardiac dysfunction through a 14-3-3 and PKA regulatory motif on Bnip3. Cell Death and Disease, 2021, 12, 1105.	6.3	7
3	The role of reactive oxygen species in the virulence of wheat leaf rust fungus <i>Puccinia triticina</i> . Environmental Microbiology, 2020, 22, 2956-2967.	3.8	7
4	Redox signalling from NADPH oxidase targets metabolic enzymes and developmental proteins in <i>Fusarium graminearum</i> . Molecular Plant Pathology, 2019, 20, 92-106.	4.2	13
5	Temporal Quantitative Changes in the Resistant and Susceptible Wheat Leaf Apoplastic Proteome During Infection by Wheat Leaf Rust (Puccinia triticina). Frontiers in Plant Science, 2019, 10, 1291.	3.6	7
6	Proteomic analyses of the cyanobacterium Arthrospira (Spirulina) platensis under iron and salinity stress. Environmental and Experimental Botany, 2018, 147, 63-74.	4.2	29
7	Phosphoproteomics Analysis for Probing Plant Stress Tolerance. Methods in Molecular Biology, 2017, 1631, 181-193.	0.9	4
8	Identification and characterization of a serine protease from wheat leaves. European Journal of Plant Pathology, 2016, 146, 293-304.	1.7	7
9	A review of wheat leaf rust research and the development of resistant cultivars in Canada. Canadian Journal of Plant Pathology, 2016, 38, 1-18.	1.4	107
10	Proteome of monoclonal antibody-purified haustoria from <i>Puccinia triticina</i> Race-1. Proteomics, 2015, 15, 1307-1315.	2.2	29
11	Advances in plant proteomics toward improvement of crop productivity and stress resistancex. Frontiers in Plant Science, 2015, 6, 209.	3.6	98
12	Proteomic profiling reveals insights into Triticeae stigma development and function. Journal of Experimental Botany, 2014, 65, 6069-6080.	4.8	10
13	Integrated analysis of seed proteome and <scp>mRNA</scp> oxidation reveals distinct postâ€ŧranscriptional features regulating dormancy in wheat (<i>Triticum aestivum</i> L.). Plant Biotechnology Journal, 2013, 11, 921-932.	8.3	59
14	Comparative secretome analysis of <i>Fusarium graminearum</i> and two of its non-pathogenic mutants upon deoxynivalenol induction in vitro. Proteomics, 2013, 13, 1913-1921.	2.2	28
15	Modulating protein function through reversible oxidation: Redoxâ€mediated processes in plants revealed through proteomics. Proteomics, 2013, 13, 579-596.	2.2	35
16	A decade of plant proteomics and mass spectrometry: Translation of technical advancements to food security and safety issues. Mass Spectrometry Reviews, 2013, 32, 335-365.	5.4	70
17	Towards Systems Biology of Mycotoxin Regulation. Toxins, 2013, 5, 675-682.	3.4	9
18	Wheat seed proteins regulated by imbibition independent of dormancy status. Plant Signaling and Behavior, 2013, 8, e26601.	2.4	5

CHRISTOF RAMPITSCH

#	Article	IF	CITATIONS
19	The beginnings of crop phosphoproteomics: exploring early warning systems of stress. Frontiers in Plant Science, 2012, 3, 144.	3.6	39
20	Developmental and seed aging mediated regulation of antioxidative genes and differential expression of proteins during pre- and post-germinative phases in pea. Journal of Plant Physiology, 2012, 169, 1477-1488.	3.5	47
21	Proteomics and plant disease: Advances in combating a major threat to the global food supply. Proteomics, 2012, 12, 673-690.	2.2	55
22	Functional genomic approaches in cereal rusts. Canadian Journal of Plant Pathology, 2012, 34, 3-12.	1.4	5
23	Redoxâ€sensitive proteome and antioxidant strategies in wheat seed dormancy control. Proteomics, 2011, 11, 865-882.	2.2	59
24	Proteome analysis of wheat leaf rust fungus, <i>Puccinia triticina</i> , infection structures enriched for haustoria. Proteomics, 2011, 11, 944-963.	2.2	62
25	Thiol redox-sensitive seed proteome in dormant and non-dormant hybrid genotypes of wheat. Phytochemistry, 2011, 72, 1162-1172.	2.9	35
26	The phosphoproteome of <i>Fusarium graminearum</i> at the onset of nitrogen starvation. Proteomics, 2010, 10, 124-140.	2.2	28
27	Prenatal alcohol exposure alters phosphorylation and glycosylation of proteins in rat offspring liver. Proteomics, 2010, 10, 417-434.	2.2	18
28	Proteomic analysis of the phytopathogenic soilborne fungus <i>Verticillium dahliae</i> reveals differential protein expression in isolates that differ in aggressiveness. Proteomics, 2010, 10, 289-303.	2.2	69
29	Methods for Functional Proteomic Analyses. Methods in Molecular Biology, 2009, 513, 93-110.	0.9	13
30	TAB2, a nucleoside diphosphate protein kinase, is a component of the tMEK2 disease resistance pathway in tomato. Physiological and Molecular Plant Pathology, 2008, 73, 33-39.	2.5	12
31	The application of proteomics to plant biology: a review. Canadian Journal of Botany, 2006, 84, 883-892.	1.1	14
32	Determination and Characterization of Site-Specific N-Glycosylation Using MALDI-Qq-TOF Tandem Mass Spectrometry:Â Case Study with a Plant Protease. Analytical Chemistry, 2006, 78, 1093-1103.	6.5	59
33	Phosphoproteomic profiling of wheat callus labelled in vivo. Plant Science, 2006, 171, 488-496.	3.6	9
34	Analysis of the wheat andPuccinia triticina (leaf rust) proteomes during a susceptible host-pathogen interaction. Proteomics, 2006, 6, 1897-1907.	2.2	117
35	Early Generation β-Glucan Selection in Oat Using a Monoclonal Antibody-Based Enzyme-Linked Immunosorbent Assay. Cereal Chemistry, 2006, 83, 510-512.	2.2	6
36	Genomic analysis of MAP kinase cascades inArabidopsis defense responses. Plant Molecular Biology Reporter, 2005, 23, 331-343.	1.8	43

#	Article	IF	CITATIONS
37	Development of a Monoclonal Antibody-Based Enzyme-Linked Immunosorbent Assay To Quantify Soluble β-Glucans in Oats and Barley. Journal of Agricultural and Food Chemistry, 2003, 51, 5882-5887.	5.2	18