Andrew M Ellis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1176227/publications.pdf

Version: 2024-02-01

126 papers 3,550 citations

147801 31 h-index 52 g-index

144 all docs 144 docs citations

144 times ranked 2781 citing authors

#	Article	IF	CITATIONS
1	Dimerization dynamics of carboxylic acids in helium nanodroplets. Journal of Chemical Physics, 2022, 156, 174304.	3.0	2
2	Infrared spectra of carbocations and CH ₄ ⁺ in helium. Physical Chemistry Chemical Physics, 2021, 23, 27449-27459.	2.8	7
3	IR Spectroscopy of the Cesium Iodide–Water Complex. Journal of Physical Chemistry A, 2020, 124, 6528-6535.	2.5	11
4	Proton transfer at subkelvin temperatures. Physical Chemistry Chemical Physics, 2020, 22, 28165-28172.	2.8	14
5	Ion-molecule reactions catalyzed by a single gold atom. Chemical Science, 2020, 11, 8502-8505.	7.4	4
6	Shifting formic acid dimers into perspective: vibrational scrutiny in helium nanodroplets. Physical Chemistry Chemical Physics, 2020, 22, 9637-9646.	2.8	10
7	Highly Charged Droplets of Superfluid Helium. Physical Review Letters, 2019, 123, 165301.	7.8	51
8	Dimers of acetic acid in helium nanodroplets. Physical Chemistry Chemical Physics, 2019, 21, 13950-13958.	2.8	23
9	Probing Elusive Cations: Infrared Spectroscopy of Protonated Acetic Acid. Journal of Physical Chemistry Letters, 2019, 10, 2108-2112.	4.6	21
10	Infrared spectroscopy of a small ion solvated by helium: OH stretching region of He <i>N</i> â^'HOCO+. Journal of Chemical Physics, 2019, 151, 194307.	3.0	14
11	Highly Stable [C ₆₀ AuC ₆₀] ^{+/–} Dumbbells. Journal of Physical Chemistry Letters, 2018, 9, 2703-2706.	4.6	10
12	The adsorption of helium atoms on small cationic gold clusters. Physical Chemistry Chemical Physics, 2018, 20, 9554-9560.	2.8	11
13	lon-molecule reactions of organic molecules with noble metal atoms in superfluid helium droplets. AIP Conference Proceedings, 2018, , .	0.4	0
14	Infrared spectroscopy of Ca(NH3) complexes. Chemical Physics Letters, 2018, 706, 736-740.	2.6	12
15	Infrared Spectroscopy of Methanol and Methanol/Water Clusters in Helium Nanodroplets: The OH Stretching Region. Journal of Physical Chemistry A, 2017, 121, 771-776.	2.5	35
16	Electron ionization of helium droplets containing C ₆₀ and alcohol clusters. Physical Chemistry Chemical Physics, 2017, 19, 24197-24201.	2.8	5
17	Resonant electron attachment to mixed hydrogen/oxygen and deuterium/oxygen clusters. Journal of Chemical Physics, 2017, 147, 194301.	3.0	1
18	Robust Ferromagnetism of Chromium Nanoparticles Formed in Superfluid Helium. Advanced Materials, 2017, 29, 1604277.	21.0	19

#	Article	IF	CITATIONS
19	Communication: Dopant-induced solvation of alkalis in liquid helium nanodroplets. Journal of Chemical Physics, 2016, 145, 181101.	3.0	25
20	Anionic Hydrogen Cluster Ions as a New Form of Condensed Hydrogen. Physical Review Letters, 2016, 117, 273001.	7.8	29
21	The adsorption of helium atoms on coronene cations. Journal of Chemical Physics, 2016, 145, 064305.	3.0	25
22	Communication: Infrared spectroscopy of salt-water complexes. Journal of Chemical Physics, 2016, 144, 121103.	3.0	24
23	Observation of stable HO ₄ ⁺ and DO ₄ ⁺ ion–molecule reactions in helium nanodroplets. Physical Chemistry Chemical Physics, 2016, 18, 13169-13172.	2.8	5
24	Infrared Spectroscopy of NaCl(CH ₃ OH) _{<i>n</i>} Complexes in Helium Nanodroplets. Journal of Physical Chemistry A, 2016, 120, 8085-8092.	2.5	17
25	Metastable Aluminum Atoms Floating on the Surface of Helium Nanodroplets. Physical Review Letters, 2015, 114, 233401.	7.8	6
26	Electron-Induced Chemistry of Cobalt Tricarbonyl Nitrosyl (Co(CO) < sub > 3 < /sub > NO) in Liquid Helium Nanodroplets. Journal of Physical Chemistry C, 2015, 119, 20917-20922.	3.1	8
27	Electron-induced chemistry of cobalt tricarbonyl nitrosyl (Co(CO) ₃ NO) in liquid helium nanodroplets. Journal of Physics: Conference Series, 2015, 635, 072045.	0.4	0
28	Role of Helium Droplets in Mass Spectra of Diatomics: Suppression of Dissociative Reactions. Chinese Journal of Chemical Physics, 2015, 28, 489-492.	1.3	5
29	Formation of Au and tetrapyridyl porphyrin complexes in superfluid helium. Physical Chemistry Chemical Physics, 2015, 17, 16699-16704.	2.8	11
30	Extracting cluster distributions from mass spectra: IsotopeFit. International Journal of Mass Spectrometry, 2015, 379, 194-199.	1.5	56
31	The interaction of He ^{â^'} with fullerenes. Journal of Chemical Physics, 2015, 142, 104306.	3.0	14
32	Metabolite profiling of Clostridium difficile ribotypes using small molecular weight volatile organic compounds. Metabolomics, 2015, 11, 251-260.	3.0	23
33	Formation of coherent rotational wavepackets in small molecule-helium clusters using impulsive alignment. Faraday Discussions, 2014, 171, 195-218.	3.2	11
34	Electronâ€Driven Selfâ€Assembly of Salt Nanocrystals in Liquid Helium. Angewandte Chemie - International Edition, 2014, 53, 13528-13531.	13.8	12
35	Probing the Structure and Dynamics of Molecular Clusters Using Rotational Wave Packets. Physical Review Letters, 2014, 113, 043004.	7.8	19
36	Formation of Dianions in Helium Nanodroplets. Angewandte Chemie - International Edition, 2014, 53, 13794-13797.	13.8	21

#	Article	IF	CITATIONS
37	Vortex-induced aggregation in superfluid helium droplets. Physical Chemistry Chemical Physics, 2014, 16, 6903-6906.	2.8	39
38	Preparation of Ultrathin Nanowires Using Superfluid Helium Droplets. Nano Letters, 2014, 14, 2902-2906.	9.1	72
39	Formation of aluminium clusters in helium nanodroplets. International Journal of Mass Spectrometry, 2014, 365-366, 86-88.	1.5	10
40	Growing metal nanoparticles in superfluid helium. Nanoscale, 2013, 5, 11545.	5.6	34
41	Helium droplets: a chemistry perspective. Chemical Society Reviews, 2013, 42, 472-484.	38.1	108
42	Electronic Spectroscopy of Toluene in Helium Nanodroplets: Evidence for a Long-Lived Excited State. Journal of Physical Chemistry A, 2013, 117, 13591-13595.	2.5	3
43	Real-time multi-marker measurement of organic compounds in human breath: towards fingerprinting breath. Journal of Breath Research, 2013, 7, 017112.	3.0	21
44	Electron-driven ionization of large methanol clusters in helium nanodroplets. Physical Chemistry Chemical Physics, 2013, 15, 3577.	2.8	13
45	Helium droplets: a new route to nanoparticles. Faraday Discussions, 2013, 162, 113.	3.2	60
46	Photoionization of Yb(NH 3) n Complexes. ChemPhysChem, 2013, 14, 723-727.	2.1	0
47	Clusters and Nanoparticles in Superfluid Helium Droplets: Fundamentals, Challenges and Perspectives. Lecture Notes in Nanoscale Science and Technology, 2013, , 237-264.	0.8	1
48	Communication: Electron impact ionization of binary H2O/X clusters in helium nanodroplets: An ab initio perspective. Journal of Chemical Physics, 2012, 137, 201102.	3.0	1
49	Generation of the simplest rotational wave packet in a diatomic molecule: Tracing a two-level superposition in the time domain. Physical Review A, 2012, 85, .	2.5	9
50	Submersion of potassium clusters in helium nanodroplets. Physical Review B, 2012, 85, .	3.2	34
51	Electronic spectroscopy of jet-cooled YbNH3. Journal of Chemical Physics, 2012, 136, 064305.	3.0	1
52	Increased Sensitivity in Proton Transfer Reaction Mass Spectrometry by Incorporation of a Radio Frequency Ion Funnel. Analytical Chemistry, 2012, 84, 5387-5391.	6.5	42
53	Ionization of Methane Clusters in Helium Nanodroplets. ChemPhysChem, 2012, 13, 469-476.	2.1	25
54	Coreâ€"shell effects in the ionization of doped helium nanodroplets. Physical Chemistry Chemical Physics, 2011, 13, 13920.	2.8	16

#	Article	IF	CITATIONS
55	Photodissociation Dynamics of Li(NH3)4: A Velocity Map Imaging Study. Journal of Physical Chemistry Letters, 2011, 2, 257-261.	4.6	10
56	Ionization of Doped Helium Nanodroplets: Residual Helium Attached to Diatomic Cations and Their Clusters. Journal of Physical Chemistry A, 2011, 115, 7010-7016.	2.5	16
57	Communication: The formation of helium cluster cations following the ionization of helium nanodroplets: Influence of droplet size and dopant. Journal of Chemical Physics, 2011, 135, 041101.	3.0	11
58	The submersion of sodium clusters in helium nanodroplets: Identification of the surface â†' interior transition. Journal of Chemical Physics, 2011, 135, 044309.	3.0	83
59	Near-infrared spectroscopy of LiNH3: First observation of the electronic spectrum. Journal of Chemical Physics, 2011, 134, 124304.	3.0	2
60	Formation of the Magic <scp>L</scp> â€Serine Octamer in Helium Nanodroplets. ChemPhysChem, 2010, 11, 90-92.	2.1	17
61	Electron attachment to amino acid clusters in helium nanodroplets: Glycine, alanine, and serine. Journal of Chemical Physics, 2010, 132, 214306.	3.0	29
62	Electron Attachment to Formamide Clusters in Helium Nanodroplets. Journal of Physical Chemistry A, 2010, 114, 1633-1638.	2.5	20
63	Communications: The electronic spectrum of Li(NH3)4. Journal of Chemical Physics, 2010, 132, 161101.	3.0	16
64	Proton-Transfer Reaction Mass Spectrometry. Chemical Reviews, 2009, 109, 861-896.	47.7	612
65	Electron attachment and electron ionization of acetic acid clusters embedded in helium nanodroplets. Physical Chemistry Chemical Physics, 2009, 11, 11631.	2.8	28
66	Gas phase precursors to anthropogenic secondary organic aerosol: detailed observations of 1,3,5-trimethylbenzene photooxidation. Atmospheric Chemistry and Physics, 2009, 9, 635-665.	4.9	88
67	Structure and magnetic properties of Fe/Fe oxide clusters. Journal of Nanoparticle Research, 2008, 10, 193-199.	1.9	21
68	Aldehyde and ketone discrimination and quantification using two-stage proton transfer reaction mass spectrometry. International Journal of Mass Spectrometry, 2008, 278, 15-19.	1.5	19
69	Intercomparison of oxygenated volatile organic compound measurements at the SAPHIR atmosphere simulation chamber. Journal of Geophysical Research, 2008, 113, .	3.3	78
70	Novel gas-stabilized iron clusters: synthesis, structure and magnetic behaviour. Nanotechnology, 2008, 19, 505602.	2.6	10
71	Selecting the size of helium nanodroplets using time-resolved probing of a pulsed helium droplet beam. Review of Scientific Instruments, 2008, 79, 016106.	1.3	20
72	Atmospheric Monitoring With Chemical Ionisation Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS) and Future Developments: Hadamard Transform Mass Spectrometry., 2008,, 64-76.		1

#	Article	IF	Citations
73	Electron impact ionization of water-doped superfluid helium nanodroplets: Observation of He(H2O)n+ clusters. Journal of Chemical Physics, 2007, 127, 134303.	3.0	28
74	Coordination structures of lithium-methylamine clusters from infrared spectroscopy and <i>ab initio</i> calculations. Journal of Chemical Physics, 2007, 127, 144314.	3.0	8
75	Technical Note: Performance of Chemical Ionization Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS) for the measurement of atmospherically significant oxygenated volatile organic compounds. Atmospheric Chemistry and Physics, 2007, 7, 609-620.	4.9	56
76	Structures of Small Li(NH3)n and Li(NH3)n+ Clusters (n = 1â^5):  Evidence from Combined Photoionization Efficiency Measurements and ab Initio Calculations. Journal of Physical Chemistry A, 2007, 111, 4922-4926.	2.5	21
77	Infrared Photodissociation Spectroscopy of Na(NH3)n Clusters:  Probing the Solvent Coordination. Journal of Physical Chemistry A, 2007, 111, 8344-8351.	2.5	21
78	Detection of Chemical Weapon Agents and Simulants Using Chemical Ionization Reaction Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2007, 79, 8359-8366.	6.5	39
79	Model for the charge-transfer probability in helium nanodroplets following electron-impact ionization. Physical Review A, 2007, 76, .	2.5	67
80	Microsolvation of lithium in ammonia: Dissociation energies and spectroscopic parameters of small clusters (n=1 and 2) and their cations. Chemical Physics, 2007, 332, 132-138.	1.9	8
81	Fast fingerprinting of arson accelerants by proton transfer reaction time-of-flight mass spectrometry. International Journal of Mass Spectrometry, 2007, 263, 222-232.	1.5	20
82	Electron Impact Ionization of Haloalkanes in Helium Nanodroplets. Journal of Physical Chemistry A, 2006, 110, 1791-1797.	2.5	39
83	Chemical ionization reaction time-of-flight mass spectrometry: Multi-reagent analysis for determination of trace gas composition. International Journal of Mass Spectrometry, 2006, 254, 85-93.	1.5	81
84	Electron impact ionization mass spectrometry of aliphatic alcohol clusters in helium nanodroplets. International Journal of Mass Spectrometry, 2006, 253, 79-86.	1.5	29
85	Infrared spectroscopy of Li(NH3)n clusters for n=4–7. Journal of Chemical Physics, 2006, 125, 034302.	3.0	31
86	Differentiation of isobaric compounds using chemical ionization reaction mass spectrometry. Rapid Communications in Mass Spectrometry, 2005, 19, 3356-3362.	1.5	61
87	Controlled growth of helium nanodroplets from a pulsed source. Review of Scientific Instruments, 2005, 76, 104102.	1.3	30
88	Soft or hard ionization of molecules in helium nanodroplets? An electron impact investigation of alcohols and ethers. Physical Chemistry Chemical Physics, 2005, 7, 4082.	2.8	47
89	PROTON TRANSFER REACTION TIME-OF-FLIGHT MASS SPECTROMETRY: A GOOD PROSPECT FOR DIAGNOSTIC BREATH ANALYSIS?., 2005, , .		1
90	Demonstration of Proton-Transfer Reaction Time-of-Flight Mass Spectrometry for Real-Time Analysis of Trace Volatile Organic Compounds. Analytical Chemistry, 2004, 76, 3841-3845.	6.5	183

#	Article	IF	CITATIONS
91	Laser-induced fluorescence spectroscopy of the gallium dimer: evidence for a 3Îu electronic ground state. Journal of Molecular Spectroscopy, 2003, 222, 273-275.	1.2	5
92	A new potential energy surface for He–H2CO. Chemical Physics Letters, 2003, 374, 392-399.	2.6	7
93	Observation of a new transition of the SrOH free radical. Journal of Molecular Spectroscopy, 2003, 218, 80-84.	1.2	8
94	Laser-Induced Fluorescence Spectroscopy of the BaNC Free Radical in a Supersonic Jet. Journal of Physical Chemistry A, 2003, 107, 4367-4372.	2.5	5
95	Electronic spectroscopy of the CaCCCH3 and SrCCCH3 free radicals. Physical Chemistry Chemical Physics, 2003, 5, 36-40.	2.8	4
96	Ab initio study of Rg–N2 and Rg–C2 van der Waals complexes (Rg=He, Ne, Ar). Journal of Chemical Physics, 2003, 119, 909-920.	3.0	45
97	Application of the Truhlar basis set extrapolation procedure toab initiocalculations on van der Waals complexes. Molecular Physics, 2001, 99, 525-529.	1.7	15
98	Laser-Induced Fluorescence Spectrum of the Orbitally Forbidden $B\hat{f}$ $\hat{g} \in \hat{\chi} \hat{f}$ $\hat{g} \in \hat{\chi}$ Transition of SrCCH. Journa of Molecular Spectroscopy, 2001, 206, 198-199.	ıl 1.2	6
99	Main group metalâ€ligand interactions in small molecules: New insights from laser spectroscopy. International Reviews in Physical Chemistry, 2001, 20, 551-590.	2.3	37
100	The Clfae"Xlf electronic spectrum of the SrNC free radical: a jet-cooled investigation. Chemical Physics Letters, 2000, 332, 303-307.	2.6	4
101	Ultraviolet laser spectroscopy of jet-cooled CaNC and SrNC free radicals: Observation of bent excited electronic states. Journal of Chemical Physics, 2000, 113, 8945-8952.	3.0	10
102	Production and detection of short-lived metal-containing molecules in the gas phase: a review. Journal of Chemical Technology and Biotechnology, 1999, 74, 863-869.	3.2	5
103	Spectroscopic Selection Rules: The Role of Photon States. Journal of Chemical Education, 1999, 76, 1291.	2.3	9
104	Observation of several new electronic transitions of the SrOH free radical. Journal of Chemical Physics, 1999, 110, 11244-11254.	3.0	20
105	Laser-induced fluorescence spectroscopy of the Ga–N2 cluster. Physical Chemistry Chemical Physics, 1999, 1, 2709-2714.	2.8	11
106	The Kinetics and Mechanism of the Pyrolysis of Manganese and Manganese Silicide CVD Precursors. Chemical Vapor Deposition, 1998, 4, 103-107.	1.3	7
107	Dispersed Fluorescence Spectroscopy of the ZnC2H5Free Radical. Journal of Molecular Spectroscopy, 1997, 185, 48-53.	1.2	5
108	First Spectroscopic Observation of the CdC2H5Radical. Journal of Molecular Spectroscopy, 1997, 185, 54-57.	1.2	2

7

#	Article	IF	CITATIONS
109	A Dispersed Fluorescence Investigation of the Low Frequency Vibrations of MgCCH(XÌf2Σ;pl). Journal of Molecular Spectroscopy, 1997, 185, 202-203.	1.2	12
110	A new discharge nozzle for spectroscopic studies in supersonic jets. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3023.	1.7	6
111	Ab initio calculations of the properties of simple alkali and alkaline earth organometallics. Computational and Theoretical Chemistry, 1996, 364, 107-119.	1.5	19
112	LIF spectroscopy of the MgCCH free radical. Chemical Physics Letters, 1996, 249, 53-58.	2.6	25
113	Spectroscopic Investigation of Zinc-Containing Organometallic Radicals Prepared Using a Pulsed Electrical Discharge Nozzle. The Journal of Physical Chemistry, 1994, 98, 10427-10431.	2.9	22
114	Dispersed fluorescence spectroscopic study of the ground electronic state of silver trimer. Chemical Physics Letters, 1993, 201, 132-140.	2.6	31
115	High resolution electronic spectroscopy of ZnCH3 and CdCH3. Journal of Chemical Physics, 1993, 99, 9376-9388.	3.0	64
116	Electronic spectroscopy of jet-cooled half-sandwich organometallic free radicals. 1. Laser-induced fluorescence study of the cyclopentadienyl complexes of zinc and cadmium. The Journal of Physical Chemistry, 1992, 96, 3247-3258.	2.9	15
117	Electronic spectroscopy of jet-cooled half-sandwich organometallic free radicals. 2. Laser-induced fluorescence study of the pyrrolyl complexes of zinc and cadmium. The Journal of Physical Chemistry, 1992, 96, 3258-3265.	2.9	6
118	Electronic spectroscopy of jet-cooled half-sandwich magnesium organometallic complexes MgC5H5, MgC5H4CH3, and MgC4H4N. The Journal of Physical Chemistry, 1992, 96, 8791-8801.	2.9	36
119	Electronic spectroscopy of jet-cooled half-sandwich organometallic free radicals: laser-induced fluorescence study of the monomethylcyclopentadienyl complexes of zinc and cadmium. Journal of the Chemical Society, Faraday Transactions, 1992, 88, 1927.	1.7	5
120	Electronic spectroscopy of jet-cooled half-sandwich organometallic complexes CaC5H5, CaC5H4CH3, and CaC4H4N. Journal of the American Chemical Society, 1992, 114, 7171-7183.	13.7	22
121	Dispersed fluorescence spectroscopy and fluorescence lifetime measurements of excited vibrational levels of CdCH3. Chemical Physics Letters, 1992, 190, 599-604.	2.6	16
122	Gas-phase metal oxidation reactions studied by chemielectron spectroscopy and chemiion mass spectrometry: reactions of cerium and lanthanum with O2(X3Σ–g), O2(a1Δg) and O(3P). Journal of the Chemical Society, Faraday Transactions, 1991, 87, 19-29.	1.7	15
123	Laser-induced fluorescence spectra of the cold radicals, ZnCH3 and CdCH3, and their inert-gas complexes, Xî—,CdCH3 (X = He, Ne, Ar, Kr, Xe). Chemical Physics Letters, 1991, 178, 185-191.	2.6	32
124	Spectroscopy of jetâ€cooled metal–monocyclopentadienyl complexes: Laser excitation spectra of calcium and cadmium cyclopentadienides. Journal of Chemical Physics, 1991, 94, 1752-1758.	3.0	32
125	Chemielectron spectroscopy: study of the reaction of cerium with oxygen. Journal of the American Chemical Society, 1989, 111, 5994-5999.	13.7	9
126	High-temperature photoelectron spectroscopy. A study of niobium monoxide and tantalum monoxide. Journal of the Chemical Society, Faraday Transactions 2, 1987, 83, 1555-1565.	1.1	42