
J H Tumlinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11761561/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Emission of herbivore elicitorâ€induced sesquiterpenes is regulated by stomatal aperture in maize (<scp><i>Z</i></scp> <i>ea mays</i>) seedlings. Plant, Cell and Environment, 2015, 38, 23-34.	5.7	44
2	Visual and chemical cues affecting the detection rate of the emerald ash borer in sticky traps. Journal of Applied Entomology, 2013, 137, 77-87.	1.8	24
3	Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 653-657.	7.1	229
4	Novel visualâ€cueâ€based sticky traps for monitoring of emerald ash borers, <i>Agrilus planipennis</i> (Col., Buprestidae). Journal of Applied Entomology, 2008, 132, 668-674.	1.8	58
5	Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12976-12981.	7.1	230
6	Multitrophic interaction facilitates parasite-host relationship between an invasive beetle and the honey bee. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8374-8378.	7.1	85
7	Extrafloral nectar from cotton (Gossypium hirsutum) as a food source for parasitic wasps. Functional Ecology, 2006, 20, 67-74.	3.6	81
8	Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1781-1785.	7.1	745
9	Differential activity and degradation of plant volatile elicitors in regurgitant of tobacco hornworm (Manduca sexta) larvae. Journal of Chemical Ecology, 2003, 29, 1357-1372.	1.8	68
10	Rapid biosynthesis of N-linolenoyl-L-glutamine, an elicitor of plant volatiles, by membrane-associated enzyme(s) in Manduca sexta. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7027-7032.	7.1	64
11	Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10552-10557.	7.1	311
12	Parasitic Wasps Learn and Report Diverse Chemicals with Unique Conditionable Behaviors. Chemical Senses, 2003, 28, 545-549.	2.0	50
13	The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Planta, 2001, 214, 171-179.	3.2	169
14	Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature, 2001, 410, 577-580.	27.8	842
15	Enzymatic decomposition of elicitors of plant volatiles in Heliothis virescens and Helicoverpa zea. Journal of Insect Physiology, 2001, 47, 749-757.	2.0	78
16	Identification and Synthesis of Volicitin and Related Components from Beet Armyworm Oral Secretions. Journal of Chemical Ecology, 2000, 26, 203-220.	1.8	106
17	An herbivore elicitor activates the gene for indole emission in maize. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14801-14806.	7.1	254
18	Attraction of Colorado Potato Beetle (Coleoptera: Chrysomelidae) to Damaged and Chemically Induced Potato Plants. Environmental Entomology, 1999, 28, 973-978.	1.4	86

#	Article	IF	CITATIONS
19	Plant Production of Volatile Semiochemicals in Response to Insectâ€Derived Elicitors. Novartis Foundation Symposium, 1999, 223, 95-109.	1.1	17
20	Herbivore-infested plants selectively attract parasitoids. Nature, 1998, 393, 570-573.	27.8	1,124
21	Concerted biosynthesis of an insect elicitor of plant volatiles. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13971-13975.	7.1	152
22	A total system approach to sustainable pest management. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 12243-12248.	7.1	475
23	De Novo Biosynthesis of Volatiles Induced by Insect Herbivory in Cotton Plants. Plant Physiology, 1997, 114, 1161-1167.	4.8	415
24	An Elicitor of Plant Volatiles from Beet Armyworm Oral Secretion. Science, 1997, 276, 945-949.	12.6	872
25	Induced synthesis of plant volatiles. Nature, 1997, 385, 30-31.	27.8	218
26	Comparisons and Contrasts in Host-Foraging Strategies of Two Larval Parasitoids with Different Degrees of Host Specificity. Journal of Chemical Ecology, 1997, 23, 1589-1606.	1.8	56
27	Pheromone biosynthesis activating neuropeptides: Functions and chemistry. Peptides, 1996, 17, 337-344.	2.4	35
28	The integral role of triacyl glycerols in the biosynthesis of the aldehydic sex pheromones of Manduca sexta (L.). Bioorganic and Medicinal Chemistry, 1996, 4, 451-460.	3.0	13
29	Volatile Semiochemicals Released from Undamaged Cotton Leaves (A Systemic Response of Living) Tj ETQq1 1 (0.784314 4.8	rgBT_/Overloc 271
30	How caterpillar-damaged plants protect themselves by attracting parasitic wasps Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4169-4174.	7.1	645
31	The chemistry of eavesdropping, alarm, and deceit Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 23-28.	7.1	150
32	Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. Journal of Chemical Ecology, 1995, 21, 1217-1227.	1.8	258
33	Host-specific recognition kairomone for the parasitoidMicroplitis croceipes (Cresson). Journal of Chemical Ecology, 1995, 21, 1697-1708.	1.8	28
34	Chemical communication in heliothine moths. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1995, 177, 527.	1.6	45
35	Pheromonotropic activity of naturally occurring pyrokinin insect neuropeptides (FXPRLamide) in Helicoverpa zea. Peptides, 1995, 16, 215-219.	2.4	52
36	Herbivore-induced volatile emissions from cotton (Gossypium hirsutum L.) seedlings. Journal of Chemical Ecology, 1994, 20, 3039-3050.	1.8	146

#	Article	IF	CITATIONS
37	Field tests of syntheticManduca sexta sex pheromone. Journal of Chemical Ecology, 1994, 20, 579-591.	1.8	29
38	Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 11836-11840.	7.1	357
39	An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. Journal of Chemical Ecology, 1993, 19, 411-425.	1.8	277
40	Systemic release of chemical signals by herbivore-injured corn Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8399-8402.	7.1	357
41	Effect of host diet and preflight experience on the flight responses of Microplitis croceipes (Cresson). Physiological Entomology, 1992, 17, 235-240.	1.5	39
42	Innervation and neural regulation of the sex pheromone gland in female Heliothis moths Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 4971-4975.	7.1	91
43	Larvalâ€damaged plants: source of volatile synomones that guide the parasitoid <i>Cotesia marginiventris</i> to the microâ€habitat of its hosts. Entomologia Experimentalis Et Applicata, 1991, 58, 75-82.	1.4	166
44	Chemically mediated associative learning: An important function in the foraging behavior of Microplitis croceipes (Cresson). Journal of Chemical Ecology, 1991, 17, 1309-1325.	1.8	41
45	Isolation and identification of allelochemicals that attract the larval parasitoid,Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. Journal of Chemical Ecology, 1991, 17, 2235-2251.	1.8	289
46	Analysis, synthesis, formulation, and field testing of three major components of male mediterranean fruit fly pheromone. Journal of Chemical Ecology, 1991, 17, 1925-1940.	1.8	61
47	Responses of male green June beetlesCotinis nitida (L.) (Coleoptera: Scarabaeidae) to female volatiles in a flight tunnel. Journal of Insect Behavior, 1990, 3, 271-276.	0.7	13
48	Endogenous suppression of pheromone production in virgin female moths. Experientia, 1990, 46, 1047-1050.	1.2	28
49	Analysis and field evaluation of volatile blend emitted by calling virgin females of beet armyworm moth,Spodoptera exigua (H2bner). Journal of Chemical Ecology, 1990, 16, 3411-3423.	1.8	17
50	Beneficial arthropod behavior mediated by airborne semiochemicals. IX. Differential response ofTrichogramma pretiosum, an egg parasitoid ofHeliothis zea, to various olfactory cues. Journal of Chemical Ecology, 1990, 16, 3531-3544.	1.8	19
51	How contact foraging experiences affect preferences for host-related odors in the larval parasitoidCotesia marginiventris (Cresson) (Hymenoptera: Braconidae). Journal of Chemical Ecology, 1990, 16, 1577-1589.	1.8	99
52	Sex pheromone ofManduca Sexta (L) Stereoselective synthesis of (10E,12E,14Z)-10,12,14-Hexadecatrienal and Isomers. Journal of Chemical Ecology, 1990, 16, 1131-1153.	1.8	15
53	Variations in Parasitoid Foraging Behavior: Essential Element of a Sound Biological Control Theory. Environmental Entomology, 1990, 19, 1183-1193.	1.4	156
54	Field Response of Feral Male Banded Cucumber Beetles to the Sex Pheromone 6,12-Dimethylpentadecan-2-One. Florida Entomologist, 1990, 73, 292.	0.5	4

#	Article	IF	CITATIONS
55	Exploitation of Herbivore-Induced Plant Odors by Host-Seeking Parasitic Wasps. Science, 1990, 250, 1251-1253.	12.6	1,507
56	Enzyme-Catalyzed Pheromone Synthesis by Heliothis Moths. ACS Symposium Series, 1989, , 332-343.	0.5	4
57	Isolation, identification, and biosynthesis of compounds produced by male hairpencil glands ofHeliothis virescens (F.) (Lepidoptera: Noctuidae). Journal of Chemical Ecology, 1989, 15, 413-427.	1.8	47
58	Phenogram Based on Allozymes and Its Relationship to Classical Biosystematics and Pheromone Structure among Eleven Diabroticites (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America, 1989, 82, 574-581.	2.5	34
59	Neural regulation of sex pheromone biosynthesis in Heliothis moths. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 2488-2492.	7.1	77
60	Comparative laboratory methods for assaying behavioral responses of <i>Rhagoletis pomonella</i> flies to host marking pheromone. Journal of Applied Entomology, 1988, 106, 437-443.	1.8	2
61	Beneficial arthropod behavior mediated by airborne semiochemicals. Journal of Chemical Ecology, 1988, 14, 1583-1596.	1.8	64
62	Beneficial arthropod behavior mediated by airborne semiochemicals. Journal of Chemical Ecology, 1988, 14, 1597-1606.	1.8	109
63	Beneficial arthropod behavior mediated by airborne semiochemicals. Journal of Chemical Ecology, 1988, 14, 1607-1616.	1.8	137
64	Beneficial arthropod behavior mediated by airborne semiochemicals. II. Olfactometric studies of host location by the parasitoidMicroplitis croceipes (Cresson) (Hymenoptera: Braconidae). Journal of Chemical Ecology, 1988, 14, 425-434.	1.8	57
65	Contemporary frontiers in insect semiochemical research. Journal of Chemical Ecology, 1988, 14, 2109-2130.	1.8	29
66	Properties of cuticular oxidases used for sex pheromone biosynthesis byHeliothis zea. Journal of Chemical Ecology, 1988, 14, 2131-2145.	1.8	39
67	Host detection by chemically mediated associative learning in a parasitic wasp. Nature, 1988, 331, 257-259.	27.8	274
68	Interactions Between Microplitis croceipes (Hymenoptera: Braconidae) and a Nuclear Polyhedrosis Virus of Heliothis zea (Lepidoptera: Noctuidae). Environmental Entomology, 1988, 17, 977-982.	1.4	27
69	Beneficial Arthropod Behavior Mediated by Airborne Semiochemicals: Source of Volatiles Mediating the Host-Location Flight Behavior of Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), a Parasitoid of Heliothis zea (Boddie) (Lepidoptera: Noctuidae)1. Environmental Entomology, 1988, 17, 745-753.	1.4	64
70	Sex Pheromone-Based Trapping System for Papaya Fruit Fly (Diptera: Tephritidae)1. Journal of Economic Entomology, 1988, 81, 1163-1169.	1.8	28
71	Asymmetric Synthesis of Selected Insect Pheromones. ACS Symposium Series, 1987, , 388-400.	0.5	1
72	Chemical Mimicry: Bolas Spiders Emit Components of Moth Prey Species Sex Pheromones. Science, 1987, 236, 964-967.	12.6	127

#	Article	IF	CITATIONS
73	Identification of female-produced sex pheromone from banded cucumber beetle,Diabrotica balteata leconte (Coleoptera: Chrysomelidae). Journal of Chemical Ecology, 1987, 13, 1601-1616.	1.8	32
74	The role of alcohols in pheromone biosynthesis by two noctuid moths that use acetate pheromone components. Archives of Insect Biochemistry and Physiology, 1987, 4, 261-269.	1.5	56
75	Sex pheromone of fall armyworm,Spodoptera frugiperda (J.E. Smith). Journal of Chemical Ecology, 1986, 12, 1909-1926.	1.8	89
76	Correlation of retention times on liquid crystal capillary column with reported vapor pressures and half-lives of compounds used in pheromone formulations. Journal of Chemical Ecology, 1986, 12, 2081-2088.	1.8	20
77	Chemical and behavioral analyses of volatile sex pheromone components released by callingHeliothis virescens (F.) females (Lepidoptera: Noctuidae). Journal of Chemical Ecology, 1986, 12, 107-126.	1.8	122
78	Prediction of release ratios of multicomponent pheromones from rubber septa. Journal of Chemical Ecology, 1986, 12, 2133-2143.	1.8	65
79	Terminal steps in pheromone biosynthesis byHeliothis virescens andH. zea. Journal of Chemical Ecology, 1986, 12, 353-366.	1.8	78
80	Trans-sexually grafted antennae alter pheromone-directed behaviour in a moth. Nature, 1986, 323, 801-803.	27.8	78
81	Responses of Diabrotica lemniscata and D. longicornis (Coleoptera: Chrysomelidae) to Stereoisomers of 8-methyl-2-decyl-propanoate and Studies on the Pheromone of D. longicornis1. Annals of the Entomological Society of America, 1986, 79, 742-746.	2.5	15
82	Response of northern corn rootworm,Diabrotica barberi Smith and Lawrence, to stereoisomers of 8-methyl-2-decyl propanoate. Journal of Chemical Ecology, 1985, 11, 21-26.	1.8	35
83	Identification of volatile sex pheromone components released by the southern armyworm,Spodoptera eridania (Cramer). Journal of Chemical Ecology, 1985, 11, 717-725.	1.8	19
84	Beetles: Pheromonal Chemists par Excellence. ACS Symposium Series, 1985, , 367-380.	0.5	6
85	Determination of double bond position in conjugated dienes by chemical ionization mass spectrometry with isobutane. Analytical Chemistry, 1985, 57, 1625-1630.	6.5	44
86	Field Evaluation of Commercial Pheromone Formulations and Traps Using a More Effective Sex Pheromone Blend for the Fall Armyworm (Lepidoptera: Noctuidae)1. Journal of Economic Entomology, 1985, 78, 1364-1369.	1.8	43
87	(<i>Z</i>)-11-HEXADECEN-1-OL: A BEHAVIORAL MODIFYING CHEMICAL PRESENT IN THE PHEROMONE GLAND OF FEMALE <i>HELIOTHIS ZEA</i> (LEPIDOPTERA: NOCTUIDAE). Canadian Entomologist, 1984, 116, 777-779.	0.8	49
88	Response ofDiabrotica virgifera virgifera, D. v. Zeae, andD. porracea to stereoisomers of 8-methyl-2-decyl propanoate. Journal of Chemical Ecology, 1984, 10, 1123-1131.	1.8	36
89	Techniques for Purifying, Analyzing, and Identifying Pheromones. Springer Series in Experimental Entomology, 1984, , 287-322.	0.7	14
90	Identification of a sex pheromone produced by female velvetbean caterpillar moth. Journal of Chemical Ecology, 1983, 9, 645-656.	1.8	51

#	Article	IF	CITATIONS
91	Identification of a female-produced sex pheromone from the southern corn rootworm,Diabrotica undecimpunctata howardi Barber. Journal of Chemical Ecology, 1983, 9, 1363-1375.	1.8	54
92	Epidermal Glands in Terminal Abdominal Segments of Female Heliothis virescens (F.) (Lepidoptera:) Tj ETQq0 C	0 rg <u>B</u> T /Ov	erlock 10 Tf 5

93	Stereospecific Sex Attractant for Diabrotica cristata (Harris) (Coleoptera: Chrysomelidae)1. Environmental Entomology, 1983, 12, 1296-1297.	1.4	14
94	Analysis of Chemical Communications Systems of Lepidoptera. ACS Symposium Series, 1982, , 1-25.	0.5	23
95	Kairomones and their use for management of entomophagous insects. Journal of Chemical Ecology, 1982, 8, 1323-1331.	1.8	122
96	Identification of a female-produced sex pheromone of the western corn rootworm. Journal of Chemical Ecology, 1982, 8, 545-556.	1.8	68
97	Velvetbean Caterpillar: Response of Males to Virgin Females and Pheromone in the Laboratory and Field. Florida Entomologist, 1981, 64, 528.	0.5	4
98	Phenethyl Propionate + Eugenol + Geraniol (3:7:3) and Japonilure: a Highly Effective Joint Lure for Japanese Beetles12. Journal of Economic Entomology, 1981, 74, 665-667.	1.8	47
99	Identification of a sex pheromone ofHeliothis subflexa (GN.) (Lepidoptera: Noctuidae) and field trapping studies using different blends of components. Journal of Chemical Ecology, 1981, 7, 1011-1022.	1.8	82
100	Japanese beetle (Coleoptera: Scarabaeidae). Journal of Chemical Ecology, 1981, 7, 1-7.	1.8	37
101	Analysis of the Reproductive Behavior of Heliothis virescens (F.)1 under Laboratory Conditions2. Annals of the Entomological Society of America, 1981, 74, 324-330.	2.5	42
102	Sex pheromone components of the beet armyworm, spodoptera exigua. Journal of Environmental Science and Health Part A, Environmental Science and Engineering, 1981, 16, 189-200.	0.1	12
103	Synthesis of the sex pheromone of the Japanese beetle. Journal of Chemical Ecology, 1980, 6, 473-485.	1.8	54
104	The Poison Sac of Red Imported Fire Ant Queens: Source of a Pheromone Attractant12. Annals of the Entomological Society of America, 1980, 73, 609-612.	2.5	70
105	Sex pheromone of the white peach scale: highly stereoselective synthesis of the stereoisomers of pentagonol propionate. Journal of Organic Chemistry, 1980, 45, 2910-2912.	3.2	36
106	Potential for the separation of insect pheromones by gas chromatography on columns coated with cholesteryl cinnamate, a liquid-crystal phase. Journal of High Resolution Chromatography, 1979, 2, 712-714.	1.4	28
107	Identification of the white peach scale sex pheromone. Journal of Chemical Ecology, 1979, 5, 941-953.	1.8	31
108	Lesser Peachtree Borer 1 : Recovery of Marked Native Males in Pheromone Baited Traps 2. Environmental Entomology, 1979, 8, 218-220.	1.4	0

#	Article	IF	CITATIONS
109	Heliothis virescens: Attraction of males to blends of (Z)-9-tetradecen-1-ol formate and (Z)-9-tetradecenal. Journal of Chemical Ecology, 1978, 4, 709-716.	1.8	14
110	<i>Attractivity of 3.13â€octadecadienâ€1â€01 acetates to the male clearwing moth</i> Synanthedon myopaeformis (<i>Borkhausen) (Lepidoptera, Sesiidae</i>). Entomologia Experimentalis Et Applicata, 1978, 23, 301-304.	1.4	21
111	A simple terminator for high efficiency liquid chromatography columns. Journal of High Resolution Chromatography, 1978, 1, 317-319.	1.4	5
112	Seasonal Occurrence of Male Sesiidae in North Central Florida Determined with Pheromone Trapping Methods. Florida Entomologist, 1978, 61, 245.	0.5	10
113	Attractivity of Pheromone Blends to Male Peachtree Borer, Synanthedon exitiosa 1234. Environmental Entomology, 1978, 7, 1-3.	1.4	20
114	Sex Attractants for Sequoia Pitch Moth and Strawberry Crown Moth 12. Environmental Entomology, 1978, 7, 544-546.	1.4	13
115	Seasonal Abundance of Synanthedon pictipes and S. exitiosa in North Central Florida 12. Environmental Entomology, 1978, 7, 589-591.	1.4	3
116	Identification of the Female Japanese Beetle Sex Pheromone: Inhibition of Male Response by an Enantiomer. Science, 1977, 197, 789-792.	12.6	270
117	Analytical and Preparative Separation of Geometrical Isomers by High Efficiency Silver Nitrate Liquid Chromatography. Journal of Chromatographic Science, 1977, 15, 10-13.	1.4	76
118	Seasonal Distribution of the Lesser Peachtree Borer 1 in Central Georgia 2 as Monitored by Pupal Skin Counts and Pheromone Trapping Techniques. Environmental Entomology, 1977, 6, 203-206.	1.4	10
119	Absence of Synergism in the Response of Florida Lesser Peachtree Borer Males to Synthetic Sex Pheromone. Florida Entomologist, 1977, 60, 27.	0.5	5
120	A SEX ATTRACTANT OF THE OLIVE FRUIT FLY, DACUS OLEAE AND ITS BIOLOGICAL ACTIVITY UNDER LABORATORY AND FIELD CONDITIONS. Entomologia Experimentalis Et Applicata, 1977, 21, 81-87.	1.4	28
121	Field evidence of synergism and inhibition in the sesiidae sex pheromone system. Journal of Chemical Ecology, 1977, 3, 57-64.	1.8	24
122	Chemically mediated host finding byBiosteres (Opius) longicaudatus, a parasitoid of tephritid fruit fly larvae. Journal of Chemical Ecology, 1977, 3, 189-195.	1.8	99
123	Manipulating Complexes of Insect Pests with Various Combinations of Behavior-Modifying Chemicals. ACS Symposium Series, 1976, , 53-66.	0.5	4
124	Lesser Peachtree Borer: 1 Influence of Trap Height, Substrates, Concentration, and Trap Design on Capture of Male Moths with Females and with a Synthetic Pheromone 2. Environmental Entomology, 1976, 5, 417-420.	1.4	18
125	Response to pheromone traps and disruption of pheromone communication in the lesser peachtree borer (Lepidoptera: Sesiidae). Journal of Chemical Ecology, 1976, 2, 73-81.	1.8	19
126	Structure elucidation of insect pheromones by microanalytical methods. Journal of Chemical Ecology, 1976, 2, 87-99.	1.8	26

#	Article	IF	CITATIONS
127	Isolation, identification, and synthesis of the sex pheromone of the tobacco budworm. Journal of Chemical Ecology, 1975, 1, 203-214.	1.8	134
128	Response of Male Clearwing Moths 1 to Caged Virgin Females, Female Extracts, and Synthetic Sex Attractants 23. Environmental Entomology, 1975, 4, 451-454.	1.4	31
129	Sex Pheromones and Reproductive Isolation of the Lesser Peachtree Borer and the Peachtree Borer. Science, 1974, 185, 614-616.	12.6	137
130	Application of chemical ionization mass spectrometry of epoxides to the determination of olefin position in aliphatic chains. Analytical Chemistry, 1974, 46, 1309-1312.	6.5	60
131	Tobacco Budworm: 1 Production, Collection, and Use of Natural Pheromone in Field Traps 3. Environmental Entomology, 1974, 3, 711-713.	1.4	7
132	Extraction and Field Bioassay of the Sex Pheromone of the Lesser Peachtree Borer 13. Environmental Entomology, 1974, 3, 569-570.	1.4	4
133	A Field Cage Bioassay System for Testing Candidate Sex Pheromones of the Tobacco Budworm1,2,3,4. Annals of the Entomological Society of America, 1974, 67, 547-552.	2.5	8
134	(Z,E)-9,12-Tetradecadien-1-ol: A Chemical Released by Female Plodia interpunctella1 That Inhibits the Sex Pheromone Response of Male Cadra cautella13. Environmental Entomology, 1974, 3, 120-122.	1.4	66
135	Perception of Z -7-dodecen-1-ol and Modification of the Sex Pheromone Response of Male Loopers 1. Environmental Entomology, 1974, 3, 677-680.	1.4	52
136	An Attractant for Males of Spodoptera dolichos (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 1973, 66, 917-918.	2.5	13
137	A Sex Pheromone for the Soybean Looper 1 , 2. Environmental Entomology, 1972, 1, 466-468.	1.4	34
138	Cis -7-Dodecen-1-ol, a Potent Inhibitor of the Cabbage Looper 1 Sex Pheromone 2. Environmental Entomology, 1972, 1, 354-358.	1.4	50
139	Sex Stimulant and Attractant in the Indian Meal Moth and in the Almond Moth. Science, 1971, 171, 802-804.	12.6	117
140	Identification and synthesis of the four compounds comprising the boll weevil sex attractant. Journal of Organic Chemistry, 1971, 36, 2616-2621.	3.2	117
141	Identification of the Trail Pheromone of a Leaf-cutting Ant, Atta texana. Nature, 1971, 234, 348-349.	27.8	133
142	Sex Pheromones Produced by Male Boll Weevil: Isolation, Identification, and Synthesis. Science, 1969, 166, 1010-1012.	12.6	297
143	Constituents of the cotton bud. Carbonyl compounds. Journal of Agricultural and Food Chemistry, 1967, 15, 517-524.	5.2	22
144	Reaction chromatography. Journal of Chromatography A, 1967, 29, 88-93.	3.7	11

9

#	Article	IF	CITATIONS
145	Reaction chromatography. Journal of Chromatography A, 1967, 29, 80-87.	3.7	13
146	Constituents of the Cotton Bud. Sesquiterpene Hydrocarbons. Journal of Agricultural and Food Chemistry, 1966, 14, 332-336.	5.2	34
147	Isolation and Identification, Constituents of Cotton Bud. Terpene Hydrocarbons. Journal of Agricultural and Food Chemistry, 1965, 13, 599-602.	5.2	28