J H Tumlinson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11761561/publications.pdf

Version: 2024-02-01

		20817	14759
147	16,812	60	127
papers	citations	h-index	g-index
153	153	153	6341
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Exploitation of Herbivore-Induced Plant Odors by Host-Seeking Parasitic Wasps. Science, 1990, 250, 1251-1253.	12.6	1,507
2	Herbivore-infested plants selectively attract parasitoids. Nature, 1998, 393, 570-573.	27.8	1,124
3	An Elicitor of Plant Volatiles from Beet Armyworm Oral Secretion. Science, 1997, 276, 945-949.	12.6	872
4	Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature, 2001, 410, 577-580.	27.8	842
5	Airborne signals prime plants against insect herbivore attack. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1781-1785.	7.1	745
6	How caterpillar-damaged plants protect themselves by attracting parasitic wasps Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4169-4174.	7.1	645
7	A total system approach to sustainable pest management. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 12243-12248.	7.1	475
8	De Novo Biosynthesis of Volatiles Induced by Insect Herbivory in Cotton Plants. Plant Physiology, 1997, 114, 1161-1167.	4.8	415
9	Systemic release of chemical signals by herbivore-injured corn Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 8399-8402.	7.1	357
10	Diurnal cycle of emission of induced volatile terpenoids by herbivore-injured cotton plant Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 11836-11840.	7.1	357
11	Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10552-10557.	7.1	311
12	Sex Pheromones Produced by Male Boll Weevil: Isolation, Identification, and Synthesis. Science, 1969, 166, 1010-1012.	12.6	297
13	Isolation and identification of allelochemicals that attract the larval parasitoid, Cotesia marginiventris (Cresson), to the microhabitat of one of its hosts. Journal of Chemical Ecology, 1991, 17, 2235-2251.	1.8	289
14	An elicitor in caterpillar oral secretions that induces corn seedlings to emit chemical signals attractive to parasitic wasps. Journal of Chemical Ecology, 1993, 19, 411-425.	1.8	277
15	Host detection by chemically mediated associative learning in a parasitic wasp. Nature, 1988, 331, 257-259.	27.8	274
16	Volatile Semiochemicals Released from Undamaged Cotton Leaves (A Systemic Response of Living) Tj ETQq0 0 C	Ͻ rgBT /Ον	erlock 10 Tf 5
17	Identification of the Female Japanese Beetle Sex Pheromone: Inhibition of Male Response by an Enantiomer. Science, 1977, 197, 789-792.	12.6	270
18	Volatiles emitted by different cotton varieties damaged by feeding beet armyworm larvae. Journal of Chemical Ecology, 1995, 21, 1217-1227.	1.8	258

#	Article	IF	Citations
19	An herbivore elicitor activates the gene for indole emission in maize. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 14801-14806.	7.1	254
20	Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12976-12981.	7.1	230
21	Phytohormone-based activity mapping of insect herbivore-produced elicitors. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 653-657.	7.1	229
22	Induced synthesis of plant volatiles. Nature, 1997, 385, 30-31.	27.8	218
23	The influence of intact-plant and excised-leaf bioassay designs on volicitin- and jasmonic acid-induced sesquiterpene volatile release in Zea mays. Planta, 2001, 214, 171-179.	3.2	169
24	Larvalâ€damaged plants: source of volatile synomones that guide the parasitoid <i>Cotesia marginiventris</i> to the microâ€habitat of its hosts. Entomologia Experimentalis Et Applicata, 1991, 58, 75-82.	1.4	166
25	Variations in Parasitoid Foraging Behavior: Essential Element of a Sound Biological Control Theory. Environmental Entomology, 1990, 19, 1183-1193.	1.4	156
26	Concerted biosynthesis of an insect elicitor of plant volatiles. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13971-13975.	7.1	152
27	The chemistry of eavesdropping, alarm, and deceit Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 23-28.	7.1	150
28	Herbivore-induced volatile emissions from cotton (Gossypium hirsutum L.) seedlings. Journal of Chemical Ecology, 1994, 20, 3039-3050.	1.8	146
29	Sex Pheromones and Reproductive Isolation of the Lesser Peachtree Borer and the Peachtree Borer. Science, 1974, 185, 614-616.	12.6	137
30	Beneficial arthropod behavior mediated by airborne semiochemicals. Journal of Chemical Ecology, 1988, 14, 1607-1616.	1.8	137
31	Isolation, identification, and synthesis of the sex pheromone of the tobacco budworm. Journal of Chemical Ecology, 1975, 1, 203-214.	1.8	134
32	Identification of the Trail Pheromone of a Leaf-cutting Ant, Atta texana. Nature, 1971, 234, 348-349.	27.8	133
33	Chemical Mimicry: Bolas Spiders Emit Components of Moth Prey Species Sex Pheromones. Science, 1987, 236, 964-967.	12.6	127
34	Kairomones and their use for management of entomophagous insects. Journal of Chemical Ecology, 1982, 8, 1323-1331.	1.8	122
35	Chemical and behavioral analyses of volatile sex pheromone components released by callingHeliothis virescens (F.) females (Lepidoptera: Noctuidae). Journal of Chemical Ecology, 1986, 12, 107-126.	1.8	122
36	Sex Stimulant and Attractant in the Indian Meal Moth and in the Almond Moth. Science, 1971, 171, 802-804.	12.6	117

#	Article	IF	CITATIONS
37	Identification and synthesis of the four compounds comprising the boll weevil sex attractant. Journal of Organic Chemistry, 1971, 36, 2616-2621.	3.2	117
38	Beneficial arthropod behavior mediated by airborne semiochemicals. Journal of Chemical Ecology, 1988, 14, 1597-1606.	1.8	109
39	Identification and Synthesis of Volicitin and Related Components from Beet Armyworm Oral Secretions. Journal of Chemical Ecology, 2000, 26, 203-220.	1.8	106
40	Chemically mediated host finding byBiosteres (Opius) longicaudatus, a parasitoid of tephritid fruit fly larvae. Journal of Chemical Ecology, 1977, 3, 189-195.	1,8	99
41	How contact foraging experiences affect preferences for host-related odors in the larval parasitoidCotesia marginiventris (Cresson) (Hymenoptera: Braconidae). Journal of Chemical Ecology, 1990, 16, 1577-1589.	1.8	99
42	Innervation and neural regulation of the sex pheromone gland in female Heliothis moths Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 4971-4975.	7.1	91
43	Sex pheromone of fall armyworm,Spodoptera frugiperda (J.E. Smith). Journal of Chemical Ecology, 1986, 12, 1909-1926.	1.8	89
44	Attraction of Colorado Potato Beetle (Coleoptera: Chrysomelidae) to Damaged and Chemically Induced Potato Plants. Environmental Entomology, 1999, 28, 973-978.	1.4	86
45	Multitrophic interaction facilitates parasite-host relationship between an invasive beetle and the honey bee. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8374-8378.	7.1	85
46	Identification of a sex pheromone of Heliothis subflexa (GN.) (Lepidoptera: Noctuidae) and field trapping studies using different blends of components. Journal of Chemical Ecology, 1981, 7, 1011-1022.	1.8	82
47	Extrafloral nectar from cotton (Gossypium hirsutum) as a food source for parasitic wasps. Functional Ecology, 2006, 20, 67-74.	3.6	81
48	Terminal steps in pheromone biosynthesis byHeliothis virescens andH. zea. Journal of Chemical Ecology, 1986, 12, 353-366.	1.8	78
49	Trans-sexually grafted antennae alter pheromone-directed behaviour in a moth. Nature, 1986, 323, 801-803.	27.8	78
50	Enzymatic decomposition of elicitors of plant volatiles in Heliothis virescens and Helicoverpa zea. Journal of Insect Physiology, 2001, 47, 749-757.	2.0	78
51	Neural regulation of sex pheromone biosynthesis in Heliothis moths. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 2488-2492.	7.1	77
52	Analytical and Preparative Separation of Geometrical Isomers by High Efficiency Silver Nitrate Liquid Chromatography. Journal of Chromatographic Science, 1977, 15, 10-13.	1.4	76
53	The Poison Sac of Red Imported Fire Ant Queens: Source of a Pheromone Attractant12. Annals of the Entomological Society of America, 1980, 73, 609-612.	2.5	70
54	Identification of a female-produced sex pheromone of the western corn rootworm. Journal of Chemical Ecology, 1982, 8, 545-556.	1.8	68

#	Article	IF	Citations
55	Differential activity and degradation of plant volatile elicitors in regurgitant of tobacco hornworm (Manduca sexta) larvae. Journal of Chemical Ecology, 2003, 29, 1357-1372.	1.8	68
56	(Z,E)-9,12-Tetradecadien-1-ol: A Chemical Released by Female Plodia interpunctella1 That Inhibits the Sex Pheromone Response of Male Cadra cautella13. Environmental Entomology, 1974, 3, 120-122.	1.4	66
57	Prediction of release ratios of multicomponent pheromones from rubber septa. Journal of Chemical Ecology, 1986, 12, 2133-2143.	1.8	65
58	Beneficial arthropod behavior mediated by airborne semiochemicals. Journal of Chemical Ecology, 1988, 14, 1583-1596.	1.8	64
59	Beneficial Arthropod Behavior Mediated by Airborne Semiochemicals: Source of Volatiles Mediating the Host-Location Flight Behavior of Microplitis croceipes (Cresson) (Hymenoptera: Braconidae), a Parasitoid of Heliothis zea (Boddie) (Lepidoptera: Noctuidae)1. Environmental Entomology, 1988, 17, 745-753.	1.4	64
60	Rapid biosynthesis of N-linolenoyl-L-glutamine, an elicitor of plant volatiles, by membrane-associated enzyme(s) in Manduca sexta. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7027-7032.	7.1	64
61	Analysis, synthesis, formulation, and field testing of three major components of male mediterranean fruit fly pheromone. Journal of Chemical Ecology, 1991, 17, 1925-1940.	1.8	61
62	Application of chemical ionization mass spectrometry of epoxides to the determination of olefin position in aliphatic chains. Analytical Chemistry, 1974, 46, 1309-1312.	6.5	60
63	Novel visualâ€cueâ€based sticky traps for monitoring of emerald ash borers, <i>Agrilus planipennis</i> (Col., Buprestidae). Journal of Applied Entomology, 2008, 132, 668-674.	1.8	58
64	Beneficial arthropod behavior mediated by airborne semiochemicals. II. Olfactometric studies of host location by the parasitoidMicroplitis croceipes (Cresson) (Hymenoptera: Braconidae). Journal of Chemical Ecology, 1988, 14, 425-434.	1.8	57
65	The role of alcohols in pheromone biosynthesis by two noctuid moths that use acetate pheromone components. Archives of Insect Biochemistry and Physiology, 1987, 4, 261-269.	1.5	56
66	Comparisons and Contrasts in Host-Foraging Strategies of Two Larval Parasitoids with Different Degrees of Host Specificity. Journal of Chemical Ecology, 1997, 23, 1589-1606.	1.8	56
67	Synthesis of the sex pheromone of the Japanese beetle. Journal of Chemical Ecology, 1980, 6, 473-485.	1.8	54
68	Identification of a female-produced sex pheromone from the southern corn rootworm, Diabrotica undecimpunctata howardi Barber. Journal of Chemical Ecology, 1983, 9, 1363-1375.	1.8	54
69	Perception of Z -7-dodecen-1-ol and Modification of the Sex Pheromone Response of Male Loopers 1. Environmental Entomology, 1974 , 3 , 677 - 680 .	1.4	52
70	Pheromonotropic activity of naturally occurring pyrokinin insect neuropeptides (FXPRLamide) in Helicoverpa zea. Peptides, 1995, 16, 215-219.	2.4	52
71	Identification of a sex pheromone produced by female velvetbean caterpillar moth. Journal of Chemical Ecology, 1983, 9, 645-656.	1.8	51
72	Cis -7-Dodecen-1-ol, a Potent Inhibitor of the Cabbage Looper 1 Sex Pheromone 2. Environmental Entomology, 1972, 1, 354-358.	1.4	50

#	Article	IF	Citations
73	Parasitic Wasps Learn and Report Diverse Chemicals with Unique Conditionable Behaviors. Chemical Senses, 2003, 28, 545-549.	2.0	50
74	$(\langle i \rangle Z \langle i \rangle)$ -11-HEXADECEN-1-OL: A BEHAVIORAL MODIFYING CHEMICAL PRESENT IN THE PHEROMONE GLAND OF FEMALE $\langle i \rangle$ HELIOTHIS ZEA $\langle i \rangle$ (LEPIDOPTERA: NOCTUIDAE). Canadian Entomologist, 1984, 116, 777-779.	0.8	49
75	Phenethyl Propionate + Eugenol + Geraniol (3:7:3) and Japonilure: a Highly Effective Joint Lure for Japanese Beetles12. Journal of Economic Entomology, 1981, 74, 665-667.	1.8	47
76	Isolation, identification, and biosynthesis of compounds produced by male hairpencil glands ofHeliothis virescens (F.) (Lepidoptera: Noctuidae). Journal of Chemical Ecology, 1989, 15, 413-427.	1.8	47
77	Chemical communication in heliothine moths. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1995, 177, 527.	1.6	45
78	Determination of double bond position in conjugated dienes by chemical ionization mass spectrometry with isobutane. Analytical Chemistry, 1985, 57, 1625-1630.	6.5	44
79	Emission of herbivore elicitorâ€induced sesquiterpenes is regulated by stomatal aperture in maize (<scp><i>Z</i></scp> <i>ea mays</i>) seedlings. Plant, Cell and Environment, 2015, 38, 23-34.	5.7	44
80	Field Evaluation of Commercial Pheromone Formulations and Traps Using a More Effective Sex Pheromone Blend for the Fall Armyworm (Lepidoptera: Noctuidae) 1. Journal of Economic Entomology, 1985, 78, 1364-1369.	1.8	43
81	Analysis of the Reproductive Behavior of Heliothis virescens (F.)1 under Laboratory Conditions2. Annals of the Entomological Society of America, 1981, 74, 324-330.	2.5	42
82	Chemically mediated associative learning: An important function in the foraging behavior of Microplitis croceipes (Cresson). Journal of Chemical Ecology, 1991, 17, 1309-1325.	1.8	41
83	Properties of cuticular oxidases used for sex pheromone biosynthesis byHeliothis zea. Journal of Chemical Ecology, 1988, 14, 2131-2145.	1.8	39
84	Effect of host diet and preflight experience on the flight responses of Microplitis croceipes (Cresson). Physiological Entomology, 1992, 17, 235-240.	1.5	39
85	Japanese beetle (Coleoptera: Scarabaeidae). Journal of Chemical Ecology, 1981, 7, 1-7.	1.8	37
86	Sex pheromone of the white peach scale: highly stereoselective synthesis of the stereoisomers of pentagonol propionate. Journal of Organic Chemistry, 1980, 45, 2910-2912.	3.2	36
87	Response of Diabrotica virgifera virgifera, D. v. Zeae, and D. porracea to stereoisomers of 8-methyl-2-decyl propanoate. Journal of Chemical Ecology, 1984, 10, 1123-1131.	1.8	36
88	Response of northern corn rootworm, Diabrotica barberi Smith and Lawrence, to stereoisomers of 8-methyl-2-decyl propanoate. Journal of Chemical Ecology, 1985, 11, 21-26.	1.8	35
89	Pheromone biosynthesis activating neuropeptides: Functions and chemistry. Peptides, 1996, 17, 337-344.	2.4	35
90	Constituents of the Cotton Bud. Sesquiterpene Hydrocarbons. Journal of Agricultural and Food Chemistry, 1966, 14, 332-336.	5.2	34

#	Article	IF	Citations
91	A Sex Pheromone for the Soybean Looper 1 , 2. Environmental Entomology, 1972, 1, 466-468.	1.4	34
92	Phenogram Based on Allozymes and Its Relationship to Classical Biosystematics and Pheromone Structure among Eleven Diabroticites (Coleoptera: Chrysomelidae). Annals of the Entomological Society of America, 1989, 82, 574-581.	2.5	34
93	Identification of female-produced sex pheromone from banded cucumber beetle, Diabrotica balteata leconte (Coleoptera: Chrysomelidae). Journal of Chemical Ecology, 1987, 13, 1601-1616.	1.8	32
94	Response of Male Clearwing Moths 1 to Caged Virgin Females, Female Extracts, and Synthetic Sex Attractants 23. Environmental Entomology, 1975, 4, 451-454.	1.4	31
95	Identification of the white peach scale sex pheromone. Journal of Chemical Ecology, 1979, 5, 941-953.	1.8	31
96	Contemporary frontiers in insect semiochemical research. Journal of Chemical Ecology, 1988, 14, 2109-2130.	1.8	29
97	Field tests of syntheticManduca sexta sex pheromone. Journal of Chemical Ecology, 1994, 20, 579-591.	1.8	29
98	Isolation and Identification, Constituents of Cotton Bud. Terpene Hydrocarbons. Journal of Agricultural and Food Chemistry, 1965, 13, 599-602.	5.2	28
99	A SEX ATTRACTANT OF THE OLIVE FRUIT FLY, DACUS OLEAE AND ITS BIOLOGICAL ACTIVITY UNDER LABORATORY AND FIELD CONDITIONS. Entomologia Experimentalis Et Applicata, 1977, 21, 81-87.	1.4	28
100	Potential for the separation of insect pheromones by gas chromatography on columns coated with cholesteryl cinnamate, a liquid-crystal phase. Journal of High Resolution Chromatography, 1979, 2, 712-714.	1.4	28
101	Sex Pheromone-Based Trapping System for Papaya Fruit Fly (Diptera: Tephritidae)1. Journal of Economic Entomology, 1988, 81, 1163-1169.	1.8	28
102	Endogenous suppression of pheromone production in virgin female moths. Experientia, 1990, 46, 1047-1050.	1.2	28
103	Host-specific recognition kairomone for the parasitoidMicroplitis croceipes (Cresson). Journal of Chemical Ecology, 1995, 21, 1697-1708.	1.8	28
104	Interactions Between Microplitis croceipes (Hymenoptera: Braconidae) and a Nuclear Polyhedrosis Virus of Heliothis zea (Lepidoptera: Noctuidae). Environmental Entomology, 1988, 17, 977-982.	1.4	27
105	Structure elucidation of insect pheromones by microanalytical methods. Journal of Chemical Ecology, 1976, 2, 87-99.	1.8	26
106	Field evidence of synergism and inhibition in the sesiidae sex pheromone system. Journal of Chemical Ecology, 1977, 3, 57-64.	1.8	24
107	Visual and chemical cues affecting the detection rate of the emerald ash borer in sticky traps. Journal of Applied Entomology, 2013, 137, 77-87.	1.8	24
108	Analysis of Chemical Communications Systems of Lepidoptera. ACS Symposium Series, 1982, , 1-25.	0.5	23

#	Article	IF	CITATIONS
109	Constituents of the cotton bud. Carbonyl compounds. Journal of Agricultural and Food Chemistry, 1967, 15, 517-524.	5.2	22
110	Epidermal Glands in Terminal Abdominal Segments of Female Heliothis virescens (F.) (Lepidoptera:) Tj ETQq0 0	0 rgBŢ/Ον	erlack 10 Tf 50
111	<i>Attractivity of 3.13â€octadecadienâ€1â€01 acetates to the male clearwing moth</i> Synanthedon myopaeformis (<i>Borkhausen) (Lepidoptera, Sesiidae</i>). Entomologia Experimentalis Et Applicata, 1978, 23, 301-304.	1.4	21
112	Attractivity of Pheromone Blends to Male Peachtree Borer, Synanthedon exitiosa 1234. Environmental Entomology, 1978, 7, 1-3.	1.4	20
113	Correlation of retention times on liquid crystal capillary column with reported vapor pressures and half-lives of compounds used in pheromone formulations. Journal of Chemical Ecology, 1986, 12, 2081-2088.	1.8	20
114	Response to pheromone traps and disruption of pheromone communication in the lesser peachtree borer and the peachtree borer (Lepidoptera: Sesiidae). Journal of Chemical Ecology, 1976, 2, 73-81.	1.8	19
115	Identification of volatile sex pheromone components released by the southern armyworm, Spodoptera eridania (Cramer). Journal of Chemical Ecology, 1985, 11, 717-725.	1.8	19
116	Beneficial arthropod behavior mediated by airborne semiochemicals. IX. Differential response of Trichogramma pretiosum, an egg parasitoid of Heliothis zea, to various olfactory cues. Journal of Chemical Ecology, 1990, 16, 3531-3544.	1.8	19
117	Lesser Peachtree Borer: 1 Influence of Trap Height, Substrates, Concentration, and Trap Design on Capture of Male Moths with Females and with a Synthetic Pheromone 2. Environmental Entomology, 1976, 5, 417-420.	1.4	18
118	Analysis and field evaluation of volatile blend emitted by calling virgin females of beet armyworm moth,Spodoptera exigua (H�bner). Journal of Chemical Ecology, 1990, 16, 3411-3423.	1.8	17
119	Plant Production of Volatile Semiochemicals in Response to Insectâ€Derived Elicitors. Novartis Foundation Symposium, 1999, 223, 95-109.	1.1	17
120	Responses of Diabrotica lemniscata and D. longicornis (Coleoptera: Chrysomelidae) to Stereoisomers of 8-methyl-2-decyl-propanoate and Studies on the Pheromone of D. longicornis1. Annals of the Entomological Society of America, 1986, 79, 742-746.	2.5	15
121	Sex pheromone of Manduca Sexta (L) Stereoselective synthesis of (10E,12E,14Z)-10,12,14-Hexadecatrienal and Isomers. Journal of Chemical Ecology, 1990, 16, 1131-1153.	1.8	15
122	Heliothis virescens: Attraction of males to blends of (Z)-9-tetradecen-1-ol formate and (Z)-9-tetradecenal. Journal of Chemical Ecology, 1978, 4, 709-716.	1.8	14
123	Stereospecific Sex Attractant for Diabrotica cristata (Harris) (Coleoptera: Chrysomelidae)1. Environmental Entomology, 1983, 12, 1296-1297.	1.4	14
124	Techniques for Purifying, Analyzing, and Identifying Pheromones. Springer Series in Experimental Entomology, 1984, , 287-322.	0.7	14
125	Reaction chromatography. Journal of Chromatography A, 1967, 29, 80-87.	3.7	13
126	An Attractant for Males of Spodoptera dolichos (Lepidoptera: Noctuidae). Annals of the Entomological Society of America, 1973, 66, 917-918.	2.5	13

#	Article	IF	Citations
127	Sex Attractants for Sequoia Pitch Moth and Strawberry Crown Moth 12. Environmental Entomology, 1978, 7, 544-546.	1.4	13
128	Responses of male green June beetlesCotinis nitida (L.) (Coleoptera: Scarabaeidae) to female volatiles in a flight tunnel. Journal of Insect Behavior, 1990, 3, 271-276.	0.7	13
129	The integral role of triacyl glycerols in the biosynthesis of the aldehydic sex pheromones of Manduca sexta (L.). Bioorganic and Medicinal Chemistry, 1996, 4, 451-460.	3.0	13
130	Sex pheromone components of the beet armyworm, spodoptera exigua. Journal of Environmental Science and Health Part A, Environmental Science and Engineering, 1981, 16, 189-200.	0.1	12
131	Reaction chromatography. Journal of Chromatography A, 1967, 29, 88-93.	3.7	11
132	Seasonal Distribution of the Lesser Peachtree Borer 1 in Central Georgia 2 as Monitored by Pupal Skin Counts and Pheromone Trapping Techniques. Environmental Entomology, 1977, 6, 203-206.	1.4	10
133	Seasonal Occurrence of Male Sesiidae in North Central Florida Determined with Pheromone Trapping Methods. Florida Entomologist, 1978, 61, 245.	0.5	10
134	A Field Cage Bioassay System for Testing Candidate Sex Pheromones of the Tobacco Budworm1,2,3,4. Annals of the Entomological Society of America, 1974, 67, 547-552.	2.5	8
135	Tobacco Budworm: 1 Production, Collection, and Use of Natural Pheromone in Field Traps 3. Environmental Entomology, 1974, 3, 711-713.	1.4	7
136	Beetles: Pheromonal Chemists par Excellence. ACS Symposium Series, 1985, , 367-380.	0.5	6
137	Absence of Synergism in the Response of Florida Lesser Peachtree Borer Males to Synthetic Sex Pheromone. Florida Entomologist, 1977, 60, 27.	0.5	5
138	A simple terminator for high efficiency liquid chromatography columns. Journal of High Resolution Chromatography, 1978, 1, 317-319.	1.4	5
139	Extraction and Field Bioassay of the Sex Pheromone of the Lesser Peachtree Borer 13. Environmental Entomology, 1974, 3, 569-570.	1.4	4
140	Manipulating Complexes of Insect Pests with Various Combinations of Behavior-Modifying Chemicals. ACS Symposium Series, 1976, , 53-66.	0.5	4
141	Velvetbean Caterpillar: Response of Males to Virgin Females and Pheromone in the Laboratory and Field. Florida Entomologist, 1981, 64, 528.	0.5	4
142	Enzyme-Catalyzed Pheromone Synthesis by Heliothis Moths. ACS Symposium Series, 1989, , 332-343.	0.5	4
143	Field Response of Feral Male Banded Cucumber Beetles to the Sex Pheromone 6,12-Dimethylpentadecan-2-One. Florida Entomologist, 1990, 73, 292.	0.5	4
144	Seasonal Abundance of Synanthedon pictipes and S. exitiosa in North Central Florida 12. Environmental Entomology, 1978, 7, 589-591.	1.4	3

J H Tumlinson

#	Article	IF	CITATIONS
145	Comparative laboratory methods for assaying behavioral responses of <i>Rhagoletis pomonella</i> flies to host marking pheromone. Journal of Applied Entomology, 1988, 106, 437-443.	1.8	2
146	Asymmetric Synthesis of Selected Insect Pheromones. ACS Symposium Series, 1987, , 388-400.	0.5	1
147	Lesser Peachtree Borer 1 : Recovery of Marked Native Males in Pheromone Baited Traps 2. Environmental Entomology, 1979, 8, 218-220.	1.4	O