Jozef Ongena

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1175994/publications.pdf Version: 2024-02-01

LOZEE ONCENA

#	Article	IF	CITATIONS
1	A novel measurement of marginal Alfvén eigenmode stability during high power auxiliary heating in JET. Nuclear Fusion, 2022, 62, 076001.	3.5	4
2	Status of the WEST travelling wave array antenna design and results from the high power mock-up. Nuclear Fusion, 2022, 62, 026046.	3.5	7
3	Alfvén cascade eigenmodes above the TAE-frequency and localization of Alfvén modes in D– ³ He plasmas on JET. Nuclear Fusion, 2022, 62, 056001.	3.5	10
4	Excitation of Alfvén eigenmodes by fusion-born alpha-particles in D- ³ He plasmas on JET. Plasma Physics and Controlled Fusion, 2022, 64, 064001.	2.1	6
5	Status and future development of Heating and Current Drive for the EU DEMO. Fusion Engineering and Design, 2022, 180, 113159.	1.9	22
6	Enhanced performance in fusion plasmas through turbulence suppression by megaelectronvolt ions. Nature Physics, 2022, 18, 776-782.	16.7	36
7	Plasma Production in ICRF in the Uragan-2M Stellarator in Hydrogen–Helium Gas Mixture. Journal of Fusion Energy, 2022, 41, .	1.2	5
8	Physics and applications of three-ion ICRF scenarios for fusion research. Physics of Plasmas, 2021, 28, .	1.9	42
9	Ion cyclotron resonance heating fast and slow wave excitation and power deposition in edge plasmas with application to ITER. Plasma Physics and Controlled Fusion, 2021, 63, 045021.	2.1	9
10	Design improvements, assembly and testing of the ICRH antenna for W7-X. Fusion Engineering and Design, 2021, 166, 112205.	1.9	8
11	Advances in the physics and thermohydraulics of nuclear reactors. European Physical Journal Plus, 2021, 136, 1.	2.6	0
12	Evidence for Alfvén eigenmodes driven by alpha particles in D- ³ He fusion experiments on JET. Nuclear Fusion, 2021, 61, 114006.	3.5	16
13	First experiments on plasma production using field-aligned ICRF fast wave antennas in the large helical device. Nuclear Fusion, 2021, 61, 114004.	3.5	9
14	Fast ion transport by sawtooth instability in the presence of ICRF–NBI synergy in JET plasmas. Nuclear Fusion, 2021, 61, 116056.	3.5	10
15	Wall conditioning in fusion devices with superconducting coils. Plasma Physics and Controlled Fusion, 2020, 62, 034002.	2.1	25
16	A travelling wave array system as solution for the ion cyclotron resonance frequencies heating of DEMO. Nuclear Fusion, 2020, 60, 016027.	3.5	10
17	Progress on the design of a DEMO high power ICRH travelling wave antenna mock-up to be tested on WEST. AIP Conference Proceedings, 2020, , .	0.4	4
18	Synergistic ICRH and NBI heating for fast ion generation and maximising fusion rate in mixed plasmas at JET. AIP Conference Proceedings, 2020, , .	0.4	10

#	Article	IF	CITATIONS
19	The ICRH system for the stellarator Wendelstein 7-X. AIP Conference Proceedings, 2020, , .	0.4	5
20	Effect of poloidal magnetic field and cross-coupling on a set of traveling wave antenna sections for the ICRH of fusion reactor plasmas. AIP Conference Proceedings, 2020, , .	0.4	0
21	Analysis of metallic impurities during the application of three-ion ICRH scenario at JET-ILW. AIP Conference Proceedings, 2020, , .	0.4	1
22	First experiments on ICRF discharge generation by a W7-X-like antenna in the Uragan-2M stellarator. Journal of Plasma Physics, 2020, 86, .	2.1	12
23	ICRH options for JET-ILW DTE2 operation. AIP Conference Proceedings, 2020, , .	0.4	7
24	Measurements of the scattering matrix of the W7-X prototype ICRH antenna and capacitor units. AIP Conference Proceedings, 2020, , .	0.4	0
25	Plasma heating and generation of energetic D ions with the 3-ion ICRF + NBI scenario in mixed H-D plasmas at JET-ILW. Nuclear Fusion, 2020, 60, 112013.	3.5	26
26	Excitation of elliptical and toroidal Alfvén eigenmodes by 3He-ions of the MeV-energy range in hydrogen-rich JET plasmas. Nuclear Fusion, 2020, 60, 112003.	3.5	2
27	Energy Confinement in Self-Organized Tokamak Plasma (without Transport Barriers). Plasma Physics Reports, 2020, 46, 337-348.	0.9	4
28	Generation and observation of fast deuterium ions and fusion-born alpha particles in JET \$mathrm{D-^3He}\$ plasmas with the 3-ion radio-frequency heating scenario. Nuclear Fusion, 2020, 60, 124006.	3.5	34
29	TWO-STRAP RF ANTENNA IN URAGAN-2M STELLARATOR. , 2020, , 10-14.		2
30	Progress on an ion cyclotron range of frequency system for DEMO. Fusion Engineering and Design, 2019, 146, 1321-1324.	1.9	9
31	Traveling wave array for DEMO with proof of principle on WEST. Fusion Engineering and Design, 2019, 146, 854-857.	1.9	10
32	Fusion: a true challenge for an enormous reward. EPJ Web of Conferences, 2018, 189, 00015.	0.3	5
33	Focus Point on the Transition to Sustainable Energy Systems. European Physical Journal Plus, 2018, 133, 1.	2.6	1
34	Major results from the first plasma campaign of the Wendelstein 7-X stellarator. Nuclear Fusion, 2017, 57, 102020.	3.5	128
35	Design of an ICRF system for plasma–wall interactions and RF plasma production studies on TOMAS. Fusion Engineering and Design, 2017, 123, 317-320	1.9	4
36	Efficient generation of energetic ions in multi-ion plasmas by radio-frequency heating. Nature Physics, 2017, 13, 973-978.	16.7	73

#	Article	IF	CITATIONS
37	Development of an ICRH antenna system at W7-X for plasma heating and wall conditioning. Fusion Engineering and Design, 2017, 123, 303-308.	1.9	14
38	Recent advances in physics and technology of ion cyclotron resonance heating in view of future fusion reactors. Plasma Physics and Controlled Fusion, 2017, 59, 054002.	2.1	12
39	The effect of lower hybrid waves on JET plasma rotation. Nuclear Fusion, 2017, 57, 034002.	3.5	6
40	Overview of the JET results in support to ITER. Nuclear Fusion, 2017, 57, 102001.	3.5	150
41	Improvement of plasma energy confinement in tokamak under radiative cooling of the edge plasma. Plasma Physics Reports, 2017, 43, 1043-1051.	0.9	8
42	Synergetic heating of D-NBI ions in the vicinity of the mode conversion layer in H-D plasmas in JET with the ITER like wall EPJ Web of Conferences, 2017, 157, 02006.	0.3	22
43	ICRH physics and technology achievements in JET-ILW. EPJ Web of Conferences, 2017, 157, 02004.	0.3	5
44	Confirmation of the topology of the Wendelstein 7-X magnetic field to better than 1:100,000. Nature Communications, 2016, 7, 13493.	12.8	85
45	Nuclear fusion and its large potential for the future world energy supply. Nukleonika, 2016, 61, 425-432.	0.8	4
46	Magnetic-confinement fusion. Nature Physics, 2016, 12, 398-410.	16.7	156
47	Contribution of LPP/ERM-KMS to the modern developments of ICRH antenna systems. Fusion Engineering and Design, 2016, 112, 21-35.	1.9	5
48	Nuclear fusion: Status report and future prospects. Energy Policy, 2016, 96, 770-778.	8.8	33
49	Optimization of ICRH for core impurity control in JET-ILW. Nuclear Fusion, 2016, 56, 036022.	3.5	59
50	ICRH for core impurity mitigation in JET-ILW. AIP Conference Proceedings, 2015, , .	0.4	2
51	Fast ion generation and bulk plasma heating with three-ion ICRF scenarios. AIP Conference Proceedings, 2015, , .	0.4	7
52	A new ion cyclotron range of frequency scenario for bulk ion heating in deuterium-tritium plasmas: How to utilize intrinsic impurities in our favour. Physics of Plasmas, 2015, 22, .	1.9	16
53	Study of the choice of the decoupling layout for the ITER ICRH system. AIP Conference Proceedings, 2015, , .	0.4	2
54	Fusion: A true challenge for an enormous reward. EPJ Web of Conferences, 2015, 98, 05004.	0.3	2

#	Article	IF	CITATIONS
55	Analysis of the phase control of the ITER ICRH antenna array. Influence on the load resilience and radiated power spectrum. AIP Conference Proceedings, 2015, , .	0.4	1
56	Overview of the JET results. Nuclear Fusion, 2015, 55, 104001.	3.5	50
57	Potential of ion cyclotron resonance frequency current drive via fast waves in DEMO. Plasma Physics and Controlled Fusion, 2015, 57, 025014.	2.1	9
58	On resonant ICRF absorption in three-ion component plasmas: a new promising tool for fast ion generation. Nuclear Fusion, 2015, 55, 032001.	3.5	43
59	Validation of the electrical design of the W7-X ICRF antenna on a reduced-scale mock-up. Fusion Engineering and Design, 2015, 96-97, 463-467.	1.9	2
60	Three-dimensional modelling and numerical optimisation of the W7-X ICRH antenna. Fusion Engineering and Design, 2015, 96-97, 508-511.	1.9	6
61	Physicists' report on EU green electricity. Nature, 2015, 525, 187-187.	27.8	0
62	The dedicated ICRH system for the stellarator Wendelstein 7-X. , 2014, , .		2
63	Effect of the minority concentration on ion cyclotron resonance heating in presence of the ITER-like wall in JET. , 2014, , .		3
64	Coupling and matching study of the ICRF antenna for W7-X. , 2014, , .		5
65	Modelling of the ion cyclotron resonance heating scenarios for W7-X stellarator. , 2014, , .		1
66	Study and design of the ion cyclotron resonance heating system for the stellarator Wendelstein 7-X. Physics of Plasmas, 2014, 21, .	1.9	35
67	On the challenge of plasma heating with the JET metallic wall. Nuclear Fusion, 2014, 54, 033002.	3.5	11
68	Physical meaning of one-machine and multimachine tokamak scalings. Plasma Physics Reports, 2013, 39, 263-271.	0.9	1
69	Overview of the JET results with the ITER-like wall. Nuclear Fusion, 2013, 53, 104002.	3.5	70
70	Technical challenges in the construction of the steady-state stellarator Wendelstein 7-X. Nuclear Fusion, 2013, 53, 126001.	3.5	77
71	Operation and coupling of LH waves with the ITER-like wall at JET. Plasma Physics and Controlled Fusion, 2013, 55, 115008.	2.1	9
72	Analysis of electron cyclotron emission by fast electrons generated by lower hybrid current drive at JET. Plasma Physics and Controlled Fusion, 2012, 54, 074003.	2.1	7

#	Article	IF	CITATIONS
73	Impurity production from the ion cyclotron resonance heating antennas in JET. Plasma Physics and Controlled Fusion, 2012, 54, 074013.	2.1	28
74	Observations of rotation in JET plasmas with electron heating by ion cyclotron resonance heating. Plasma Physics and Controlled Fusion, 2012, 54, 074007.	2.1	8
75	JET intrinsic rotation studies in plasmas with a high normalized beta and varying toroidal field ripple. Plasma Physics and Controlled Fusion, 2012, 54, 074006.	2.1	12
76	JET scrape-off-layer ionization at lower hybrid wave launching. Plasma Physics and Controlled Fusion, 2012, 54, 074005.	2.1	7
77	Simulation of ITER full-field ICWC scenario in JET: RF physics aspects. Plasma Physics and Controlled Fusion, 2012, 54, 074014.	2.1	26
78	Minority and mode conversion heating in (³ He)–H JET plasmas. Plasma Physics and Controlled Fusion, 2012, 54, 074009.	2.1	18
79	Optimizing ion-cyclotron resonance frequency heating for ITER: dedicated JET experiments. Plasma Physics and Controlled Fusion, 2012, 54, 069601.	2.1	2
80	Large ELM-like events triggered by core MHD in JET advanced tokamak plasmas: impact on plasmas profiles, plasma-facing components and heating systems. Nuclear Fusion, 2012, 52, 023018.	3.5	6
81	Fast ions in mode conversion heating (3He)–H plasmas in JET. Plasma Physics and Controlled Fusion, 2012, 54, 074010.	2.1	7
82	Implementation of load resilient ion cyclotron resonant frequency (ICRF) systems to couple high levels of ICRF power to ELMy H-mode plasmas in JET. Plasma Physics and Controlled Fusion, 2012, 54, 074011.	2.1	24
83	The interaction of radio-frequency fields with fusion plasmas: the JET experience. Plasma Physics and Controlled Fusion, 2012, 54, 070201.	2.1	0
84	Influence of gas puff location on the coupling of lower hybrid waves in JET ELMy H-mode plasmas. Plasma Physics and Controlled Fusion, 2012, 54, 074004.	2.1	14
85	Heating, Confinement and Extrapolation to Reactors. Fusion Science and Technology, 2012, 61, 413-420.	1.1	0
86	Energy for Future Centuries: Prospects for Fusion Power as a Future Energy Source. Fusion Science and Technology, 2012, 61, 3-16.	1.1	29
87	Experimental investigation of ion cyclotron range of frequencies heating scenarios for ITER's half-field hydrogen phase performed in JET. Plasma Physics and Controlled Fusion, 2012, 54, 074008.	2.1	5
88	Physics and engineering results obtained with the ion cyclotron range of frequencies ITER-like antenna on JET. Plasma Physics and Controlled Fusion, 2012, 54, 074012.	2.1	42
89	Plasma and antenna coupling characterization in ICRF-wall conditioning experiments. Fusion Engineering and Design, 2012, 87, 98-103.	1.9	8
90	Operational issues at high lower hybrid power density in JET: waveguide conditioning and arc detection. Plasma Physics and Controlled Fusion, 2012, 54, 074002.	2.1	5

#	Article	IF	CITATIONS
91	Heat loads on JET plasma facing components from ICRF and LH wave absorption in the SOL. Nuclear Fusion, 2011, 51, 103018.	3.5	62
92	Detecting non-Maxwellian electron velocity distributions at JET by high resolution Thomson scattering. Review of Scientific Instruments, 2011, 82, 033514.	1.3	16
93	Performance of the Scattering Matrix Arc Detection System on the JET ITER-like ICRF antenna. Fusion Engineering and Design, 2011, 86, 522-529.	1.9	8
94	IC Wall Conditioning antenna for W7-X with potential for Heating and Fast Particle Generation. AIP Conference Proceedings, 2011, , .	0.4	0
95	Enhancing The Mode Conversion Efficiency In JET Plasmas With Multiple Mode Conversion Layers. AIP Conference Proceedings, 2011, , .	0.4	0
96	ICRF scenarios for ITER's half-field phase. AIP Conference Proceedings, 2011, , .	0.4	2
97	Heat loads from ICRF and LH wave absorption in the SOL: characterization on JET and implications for the ITER-Like Wall. AIP Conference Proceedings, 2011, , .	0.4	1
98	ICRF physics aspects of wall conditioning with conventional antennas in large-size tokamaks. Journal of Nuclear Materials, 2011, 415, S1029-S1032.	2.7	20
99	Recent results on Ion Cyclotron Wall Conditioning in mid and large size tokamaks. Journal of Nuclear Materials, 2011, 415, S1021-S1028.	2.7	41
100	Evaluation of the Faraday angle by numerical methods and comparison with the Tore Supra and JET polarimeter electronics. Review of Scientific Instruments, 2011, 82, 043502.	1.3	2
101	Optimizing ion-cyclotron resonance frequency heating for ITER: dedicated JET experiments. Plasma Physics and Controlled Fusion, 2011, 53, 124019.	2.1	17
102	An ITER-relevant passive active multijunction launcher for lower hybrid current drive in JET-grade plasmas. Nuclear Fusion, 2011, 51, 083017.	3.5	8
103	REPORT OF THE ENERGY PERMANENT MONITORING PANEL. , 2011, , 577-581.		0
104	Energy for Future Centuries: Prospects for Fusion Power as a Future Energy Source. Fusion Science and Technology, 2010, 57, 3-15.	1.1	6
105	Heating, Confinement and Extrapolation to Reactors. Fusion Science and Technology, 2010, 57, 457-473.	1.1	1
106	Numerical Transport Codes. Fusion Science and Technology, 2010, 57, 381-390.	1.1	0
107	LH power deposition and CD efficiency studies by application of modulated power at JET. Nuclear Fusion, 2010, 50, 075003.	3.5	14
108	Influence of Magnetic Field Ripple on the Intrinsic Rotation of Tokamak Plasmas. Physical Review Letters, 2010, 105, 105005.	7.8	32

#	Article	IF	CITATIONS
109	Anomalous and classical neutral beam fast ion diffusion on JET. Plasma Physics and Controlled Fusion, 2009, 51, 044004.	2.1	25
110	Toroidal rotation in RF heated JET plasmas. Plasma Physics and Controlled Fusion, 2009, 51, 044008.	2.1	45
111	Effects of ICRF induced density modifications on LH wave coupling at JET. Plasma Physics and Controlled Fusion, 2009, 51, 044003.	2.1	19
112	Special section on recent progress on radio frequency heating and current drive studies in the JET tokamak. Plasma Physics and Controlled Fusion, 2009, 51, 040201.	2.1	0
113	Effect of gas injection during LH wave coupling at ITER-relevant plasma–wall distances in JET. Plasma Physics and Controlled Fusion, 2009, 51, 044001.	2.1	30
114	Present Status of the ITER-like ICRF Antenna on JET. , 2009, , .		4
115	Operational Experience with the Scattering Matrix Arc Detection System on the JET ITER-Like Antenna. , 2009, , .		4
116	Overview of Recent Results on Heating and Current Drive in the JET tokamak. , 2009, , .		3
117	Recent experiments on alternative dipole phasing with the JET A2 ICRF antennas. , 2009, , .		17
118	Overview on Experiments On ITER-like Antenna On JET And ICRF Antenna Design For ITER. , 2009, , .		11
119	RF Matching Feedback Control Systems on the JET ITER-Like Antenna. , 2009, , .		2
120	Simulating the JET ITER-like Antenna circuit. , 2009, , .		0
121	LH power modulation experiment on JET. , 2009, , .		Ο
122	Impurity Radiation for Detecting Arcs during High Lower Hybrid Power Transmission at JET. , 2009, , .		0
123	LH Power Losses In Front of the JET Launcher. AIP Conference Proceedings, 2009, , .	0.4	3
124	SOL characterization and LH coupling measurements on JET in ITER-relevant conditions. Plasma Physics and Controlled Fusion, 2009, 51, 044002.	2.1	14
125	Modelling of D majority ICRH at JET: impact of absorption at the Doppler-shifted resonance. Plasma Physics and Controlled Fusion, 2009, 51, 044006.	2.1	31
126	Commissioning of the ITER-like ICRF antenna for JET. Fusion Engineering and Design, 2009, 84, 279-283.	1.9	22

#	Article	IF	CITATIONS
127	ICRF Wall Conditioning: Present Status and Developments for Future Superconducting Fusion Machines. , 2009, , .		2
128	Fundamental ion cyclotron resonance heating of JET deuterium plasmas. Plasma Physics and Controlled Fusion, 2009, 51, 044005.	2.1	19
129	JET (³ He)–D scenarios relying on RF heating: survey of selected recent experiments. Plasma Physics and Controlled Fusion, 2009, 51, 044007.	2.1	47
130	SCIENCE AND TECHNOLOGY FOR SUSTAINABLE WELL-BEING. , 2009, , .		0
131	The 2008 Public Release of the International Multi-tokamak Confinement Profile Database. Nuclear Fusion, 2008, 48, 125001.	3.5	35
132	Energy for Future Centuries - Prospects for Fusion Power as a Future Energy Source. Fusion Science and Technology, 2008, 53, 3-15.	1.1	6
133	Chapter 3: ELMy H-Mode Operation in JET. Fusion Science and Technology, 2008, 53, 891-957.	1.1	23
134	Numerical Transport Codes. Fusion Science and Technology, 2008, 53, 367-376.	1.1	8
135	Heating, Confinement and Extrapolation to Reactors. Fusion Science and Technology, 2008, 53, 443-458.	1.1	0
136	LH Wave Coupling over ITER-Like Distances at JET. AIP Conference Proceedings, 2007, , .	0.4	3
137	Toroidal Rotation in RF Heated JET Plasmas. AIP Conference Proceedings, 2007, , .	0.4	1
138	Hybrid Couplers On The JET ICRF System: Commissioning And First Results on ELMs. AIP Conference Proceedings, 2007, , .	0.4	9
139	Overview of recent results on Heating and Current Drive in JET. AIP Conference Proceedings, 2007, , .	0.4	1
140	Coupling Of The JET ICRF Antennas In ELMy H-mode Plasmas With ITER Relevant Plasma—Straps Distance. AIP Conference Proceedings, 2007, , .	0.4	9
141	ICRH of JET and LHD Majority Ions at Their Fundamental Cyclotron Frequency. AIP Conference Proceedings, 2007, , .	0.4	1
142	Recent experimental results and modeling of RF heating of ([sup 3]He)-D JET plasmas: RF as a tool to study transport. AIP Conference Proceedings, 2007, , .	0.4	1
143	Modification of Sawtooth Oscillations with ICRF Waves in the JET Tokamak. AIP Conference Proceedings, 2007, , .	0.4	0
144	Understanding the spatial structure of RF-induced SOL modifications. Plasma Physics and Controlled Fusion, 2007, 49, B35-B45.	2.1	52

#	Article	IF	CITATIONS
145	Recent progress on the development and analysis of the ITPA global H-mode confinement database. Nuclear Fusion, 2007, 47, 147-174.	3.5	55
146	Recent ICRF developments at JET. Fusion Engineering and Design, 2007, 82, 873-880.	1.9	12
147	THE FUTURE OF NUCLEAR ENERGY. , 2007, , .		0
148	Numerical Transport Codes. Fusion Science and Technology, 2006, 49, 337-345.	1.1	1
149	Heating, Confinement and Extrapolation to Reactors. Fusion Science and Technology, 2006, 49, 425-440.	1.1	2
150	Energy for Future Centuries - Prospects for Fusion Power as a Future Energy Source. Fusion Science and Technology, 2006, 49, 3-15.	1.1	9
151	JET's contribution to fusion science and ITER. Physica Scripta, 2006, T123, 14-23.	2.5	1
152	The role of aspect ratio and beta in H-mode confinement scalings. Plasma Physics and Controlled Fusion, 2006, 48, A429-A438.	2.1	15
153	The Radiative Improved Mode in TEXTOR: Power Exhaust and Improved Confinement at High Density. Fusion Science and Technology, 2005, 47, 187-201.	1.1	11
154	Overview of recent JET results in preparation for ITER operation: Interplay between technical and scientific progress. Fusion Engineering and Design, 2005, 74, 17-30.	1.9	0
155	Scaling of the energy confinement time with β and collisionality approaching ITER conditions. Nuclear Fusion, 2005, 45, 1078-1084.	3.5	49
156	Overview of JET results. Nuclear Fusion, 2005, 45, S63-S85.	3.5	19
157	Impurity-seeded ELMy H-modes in JET, with high density and reduced heat load. Nuclear Fusion, 2005, 45, 1404-1410.	3.5	40
158	Density dependence of trace tritium transport in H-mode Joint European Torus plasma. Physics of Plasmas, 2005, 12, 052508.	1.9	9
159	Poloidal Rotation Dynamics, Radial Electric Field, and Neoclassical Theory in the Jet Internal-Transport-Barrier Region. Physical Review Letters, 2005, 95, 155003.	7.8	108
160	Overview of transport, fast particle and heating and current drive physics using tritium in JET plasmas. Nuclear Fusion, 2005, 45, S181-S194.	3.5	31
161	Impurity penetration through the edge transport barrier. Plasma Physics and Controlled Fusion, 2004, 46, 1299-1311.	2.1	14
162	ELMy H-modes in JET helium-4 plasmas. Plasma Physics and Controlled Fusion, 2004, 46, 519-534.	2.1	50

#	Article	lF	CITATIONS
163	Predictive modelling of the impact of argon injection on H-mode plasmas in JET with the RITM code. Plasma Physics and Controlled Fusion, 2004, 46, A241-A247.	2.1	12
164	Recent H-mode density limit studies at JET. Nuclear Fusion, 2004, 44, 752-760.	3.5	34
165	Localized bulk electron heating with ICRF mode conversion in the JET tokamak. Nuclear Fusion, 2004, 44, 33-46.	3.5	53
166	Reduction of divertor heat load in JET ELMy H-modes using impurity seeding techniques. Nuclear Fusion, 2004, 44, 312-319.	3.5	91
167	JET: Preparing the future in fusion. European Physical Journal D, 2004, 54, C28-C38.	0.4	1
168	Towards the realization on JET of an integrated H-mode scenario for ITER. Nuclear Fusion, 2004, 44, 124-133.	3.5	45
169	The beta scaling of energy confinement in ELMy H-modes in JET. Plasma Physics and Controlled Fusion, 2004, 46, A215-A225.	2.1	67
170	Tritium transport experiments on the JET tokamak. Plasma Physics and Controlled Fusion, 2004, 46, B255-B265.	2.1	64
171	Numerical Transport Codes. Fusion Science and Technology, 2004, 45, 371-379.	1.1	6
172	Heating, Confinement, and Extrapolation to Reactors. Fusion Science and Technology, 2004, 45, 453-466.	1.1	0
173	Energy for Future Centuries: Will Fusion Be an Inexhaustible, Safe, and Clean Energy Source?. Fusion Science and Technology, 2004, 45, 3-14.	1.1	28
174	Integrated scenario in JET using real-time profile control. Plasma Physics and Controlled Fusion, 2003, 45, A367-A383.	2.1	55
175	Simulation of the time behaviour of impurities in JET Ar-seeded discharges and its relation with sawtoothing and RF heating. Plasma Physics and Controlled Fusion, 2003, 45, 2011-2024.	2.1	41
176	Role of sawtooth in avoiding impurity accumulation and maintaining good confinement in JET radiative mantle discharges. Nuclear Fusion, 2003, 43, 1204-1213.	3.5	93
177	Overview of JET results. Nuclear Fusion, 2003, 43, 1540-1554.	3.5	38
178	Impurity-seeded plasma experiments on JET. Nuclear Fusion, 2003, 43, 49-62.	3.5	48
179	Improved ELM scaling with impurity seeding in JET. Plasma Physics and Controlled Fusion, 2003, 45, 1657-1669.	2.1	14
180	High density, high performance high-confinement-mode plasmas in the Joint European Torus (JET). Physics of Plasmas, 2002, 9, 2103-2112.	1.9	12

Jozef Ongena

#	Article	IF	CITATIONS
181	Radiation pattern and impurity transport in argon seeded ELMy H-mode discharges in JET. Plasma Physics and Controlled Fusion, 2002, 44, 1863-1878.	2.1	46
182	Seeding of impurities in JET H-mode discharges to mitigate the impact of ELMs. Plasma Physics and Controlled Fusion, 2002, 44, 1879-1891.	2.1	19
183	Energy confinement in steady-state ELMy H-modes in JET. Plasma Physics and Controlled Fusion, 2002, 44, 1929-1935.	2.1	12
184	Optimization of pellet scenarios for long pulse fuelling to high densities at JET*. Nuclear Fusion, 2002, 42, 388-402.	3.5	22
185	High density operation at JET by pellet refuelling*. Plasma Physics and Controlled Fusion, 2002, 44, 1919-1928.	2.1	20
186	Effects of impurity seeding in DIII-D radiating mantle discharges. Nuclear Fusion, 2002, 42, 28-41.	3.5	31
187	Long timescale density peaking in JET. Plasma Physics and Controlled Fusion, 2002, 44, 1911-1917.	2.1	47
188	Comparison of L-mode regimes with enhanced confinement by impurity seeding in JET and DIII-D. Plasma Physics and Controlled Fusion, 2002, 44, 1893-1902.	2.1	22
189	Confinement properties of high density impurity seeded ELMy H-mode discharges at low and high triangularity on JET. Plasma Physics and Controlled Fusion, 2002, 44, 1845-1861.	2.1	47
190	Characteristics and scaling of energy and particle losses during Type I ELMs in JET H-modes. Plasma Physics and Controlled Fusion, 2002, 44, 1815-1844.	2.1	153
191	Stability analysis of improved confinement discharges: internal transport barriers in Tore Supra and radiative improved mode in TEXTOR. Nuclear Fusion, 2002, 42, 892-902.	3.5	76
192	Predictive modelling of impurity seeded plasmas in JET. Plasma Physics and Controlled Fusion, 2002, 44, 1903-1910.	2.1	20
193	Overview of recent experimental results from the DIII-D advanced tokamak programme. Nuclear Fusion, 2001, 41, 1341-1353.	3.5	15
194	ICRF heating scenarios in JET with emphasis on [sup 4]He plasmas for the non-activated phase of ITER. AIP Conference Proceedings, 2001, , .	0.4	4
195	Physics of confinement improvement of plasmas with impurity injection in DIII-D. Nuclear Fusion, 2001, 41, 317-323.	3.5	36
196	Experimental and simulated argon spectra in the 2.3-3.4 nm region from tokamak plasmas. Journal of Physics B: Atomic, Molecular and Optical Physics, 2001, 34, 127-142.	1.5	16
197	Recent progress on JET towards the ITER reference mode of operation at high density. Plasma Physics and Controlled Fusion, 2001, 43, A11-A30.	2.1	51
198	Recent progress toward high performance above the Greenwald density limit in impurity seeded discharges in limiter and divertor tokamaks. Physics of Plasmas, 2001, 8, 2188-2198.	1.9	52

Jozef Ongena

#	Article	IF	CITATIONS
199	STATUS OF MAGNETIC FUSION RESEARCH. , 2001, , .		0
200	MHD activity at the beta limit in RI mode discharges on TEXTOR-94. Nuclear Fusion, 2000, 40, 821-832.	3.5	21
201	Neon radiation efficiency for different confinement regimes in TEXTOR-94. Nuclear Fusion, 2000, 40, 1845-1858.	3.5	16
202	JET radiative mantle experiments in ELMy H-Mode. Plasma Physics and Controlled Fusion, 2000, 42, A81-A88.	2.1	15
203	Turbulent transport and turbulence in radiative I mode plasmas in TEXTOR-94. Nuclear Fusion, 2000, 40, 209-221.	3.5	22
204	Pellet fuelling into radiative improved confinement discharges in TEXTOR-94. Nuclear Fusion, 2000, 40, 1469-1475.	3.5	6
205	Impurity-induced turbulence suppression and reduced transport in the DIII-D tokamak. Physics of Plasmas, 2000, 7, 1870-1877.	1.9	60
206	Model for the Transition to the Radiatively Improved Mode in a Tokamak. Physical Review Letters, 2000, 84, 895-898.	7.8	89
207	Quasistationary High Confinement Discharges with trans-Greenwald Density on TEXTOR-94. Physical Review Letters, 2000, 85, 2312-2315.	7.8	21
208	The International Multi-Tokamak Profile Database. Nuclear Fusion, 2000, 40, 1955-1981.	3.5	54
209	Heating, Confinement and Extrapolation to Reactors. Fusion Science and Technology, 2000, 37, 455-466.	0.6	0
210	Confinement mechanisms in the radiatively improved mode. Plasma Physics and Controlled Fusion, 1999, 41, B317-B327.	2.1	25
211	Overview of radiative improved mode results on TEXTOR-94. Nuclear Fusion, 1999, 39, 1637-1648.	3.5	69
212	Evidence of suppression of ITG-instability in the radiatively improved mode in TEXTOR-94. Plasma Physics and Controlled Fusion, 1999, 41, L9-L15.	2.1	37
213	Overview of experiments with radiation cooling at high confinement and high density in limited and diverted discharges. Plasma Physics and Controlled Fusion, 1999, 41, A379-A399.	2.1	51
214	Enhanced confinement discharges in DIII-D with neon and argon induced radiation. Journal of Nuclear Materials, 1999, 266-269, 380-385.	2.7	37
215	Plasma wall interaction and plasma edge properties with radiation cooling and improved confinement in TEXTOR-94. Journal of Nuclear Materials, 1999, 266-269, 75-83.	2.7	18
216	Tests of local transport theory and reduced wall impurity influx with highly radiative plasmas in the Tokamak Fusion Test Reactor. Physics of Plasmas, 1999, 6, 877-884.	1.9	45

#	Article	IF	CITATIONS
217	Variation of Injected Neutral Beam Power at Constant Particle Energy by Changing the Beam Target Aperture of the TEXTOR Neutral Beam Injectors. Fusion Science and Technology, 1999, 35, 42-53.	0.6	22
218	Review and present status of the TEXTOR radiative improved (RI) mode. Journal of Plasma Physics, 1998, 59, 587-610.	2.1	14
219	Studies on basic phenomena during the pellet injection into high-temperature plasmas. Plasma Physics and Controlled Fusion, 1997, 39, A351-A360.	2.1	3
220	The influence of plasma-edge properties on high confinement discharges with a radiating plasma mantle at the tokamak TEXTOR-94. Plasma Physics and Controlled Fusion, 1997, 39, B189-B206.	2.1	27
221	High confinement and high density with stationary plasma energy and strong edge radiation cooling in the upgraded Torus Experiment for Technology Oriented Research (TEXTOR-94). Physics of Plasmas, 1997, 4, 1690-1698.	1.9	54
222	<title>Near-diffraction-limited diode-pumped thin-disk Nd:YVO<formula><inf><roman>4</roman></inf></formula> laser</title> . Proceedings of SPIE, 1997, 3097, 633.	0.8	3
223	ITER L mode confinement database. Nuclear Fusion, 1997, 37, 1303-1328.	3.5	155
224	ICRF plasma production in TEXTOR-94. , 1997, , .		1
225	ICRH in radiatively cooled TEXTOR-94 plasmas. , 1997, , .		3
226	Scaling of radiated power to plasma contamination for neon seeded discharges on boronized TEXTOR-94. Journal of Nuclear Materials, 1997, 241-243, 853-856.	2.7	4
227	High Confinement and High Density with Stationary Plasma Energy and Strong Edge Radiation in the TEXTOR-94 Tokamak. Physical Review Letters, 1996, 77, 2487-2490.	7.8	114
228	Improved dielectric tensor in the ICRF module of Transp. AIP Conference Proceedings, 1996, , .	0.4	3
229	Recent results on heating and confinement in TEXTOR. , 1996, , .		0
230	Transport and improved confinement in high power edge radiation cooling experiments on TEXTOR. Nuclear Fusion, 1996, 36, 39-53.	3.5	33
231	Confinement transitions with radiation cooling in TEXTOR-94. Plasma Physics and Controlled Fusion, 1996, 38, 279-288.	2.1	20
232	Deuterium-tritium experiments on TFTR. AIP Conference Proceedings, 1995, , .	0.4	0
233	Recent results on ion cyclotron and combined heating of TEXTOR. Fusion Engineering and Design, 1995, 26, 103-120.	1.9	10
234	Results and modelling of high power edge radiation cooling in Textor. Physica Scripta, 1995, 52, 449-457.	2.5	23

#	Article	IF	CITATIONS
235	The influence of impurities on limiter tokamak plasmas and relevant mechanisms. Plasma Physics and Controlled Fusion, 1995, 37, A241-A253.	2.1	27
236	Study of the power exhaust and the role of impurities in the Torus Experiment for Technological Oriented Research (TEXTOR). Physics of Plasmas, 1995, 2, 2272-2280.	1.9	14
237	Review of deuterium–tritium results from the Tokamak Fusion Test Reactor. Physics of Plasmas, 1995, 2, 2176-2188.	1.9	89
238	Review of combined ICRH-NBI results in TEXTOR. AIP Conference Proceedings, 1994, , .	0.4	2
239	Improved confinement with edge radiative cooling at high densities and high heating power in TEXTOR. Nuclear Fusion, 1994, 34, 825-836.	3.5	66
240	Preparations for deuterium–tritium experiments on the Tokamak Fusion Test Reactor*. Physics of Plasmas, 1994, 1, 1560-1567.	1.9	7
241	Deuterium-Tritium Experiments on the Tokamak Fusion Test Reactor. Fusion Science and Technology, 1994, 26, 389-398.	0.6	10
242	Improved confinement in TEXTOR. Nuclear Fusion, 1993, 33, 283-300.	3.5	26
243	Review of recent advances in heating and current drive on TEXTOR. Plasma Physics and Controlled Fusion, 1993, 35, A15-A34.	2.1	13
244	Improved plasma performance in TEXTOR with silicon coated surfaces. Physical Review Letters, 1993, 71, 1549-1552.	7.8	90
245	Comparison of the performance of ICRF antennas with and without Faraday shield on TEXTOR. Nuclear Fusion, 1992, 32, 1913-1925.	3.5	25
246	Ion cyclotron resonance heating of a tokamak plasma using an antenna without a Faraday shield. Nuclear Fusion, 1991, 31, 1770-1774.	3.5	25
247	DEVELOPMENT AND TESTING OF A Zeff DIAGNOSTIC FOR TEXTOR. , 1991, , 552-556.		0
248	High power ICRH and NB heating results in TEXTOR. Plasma Physics and Controlled Fusion, 1990, 32, 889-902.	2.1	17
249	Effect of antenna phasing and wall conditioning on ICRH in TEXTOR. Plasma Physics and Controlled Fusion, 1989, 31, 921-939.	2.1	39
250	INSTALLATION, TESTING AND FIRST RESULTS OF TEXTOR'S NEW ICRH SYSTEM. , 1989, , 464-468.		0
251	Monte Carlo investigation of imprisonment of resonance radiation with partial frequency redistribution. Journal of Physics B: Atomic, Molecular and Optical Physics, 1988, 21, 1933-1937.	1.5	17
252	Measurements of the collapse of the steady-state cataphoretic density profile in a discharge tube with large cylindrical end volumes. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1986, 142, 381-388.	0.9	0

#	Article	IF	CITATIONS
253	The decay of 1s2 and 1s4 radiation in krypton. Physics Letters, Section A: General, Atomic and Solid State Physics, 1984, 105, 209-211.	2.1	0
254	Theoretical model for the collapse of the steady-state cataphoretic density profile in a discharge tube with large cylindrical end volumes. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1984, 124, 75-84.	0.9	0
255	Theoretical model for transient cataphoretic segregation in a discharge tube with large cylindrical end volumes. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1984, 125, 321-333.	0.9	2
256	Transient cataphoresis in a discharge tube with end volumes. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1982, 114, 262-268.	0.9	2
257	Recent developments in pellet fuelling at JET. , 0, , .		3