
Priscilla L Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1175877/publications.pdf Version: 2024-02-01

DDISCILLA L VANC

#	Article	IF	CITATIONS
1	Antiviral Therapeutics. ACS Infectious Diseases, 2021, 7, 1297-1297.	3.8	4
2	Small-Molecule Inhibition of Viral Fusion Glycoproteins. Annual Review of Virology, 2021, 8, 459-489.	6.7	9
3	A broad-spectrum antiviral molecule, QL47, selectively inhibits eukaryotic translation. Journal of Biological Chemistry, 2020, 295, 1694-1703.	3.4	3
4	Call for Papers: Antiviral Therapeutics. ACS Infectious Diseases, 2020, 6, 1527-1528.	3.8	1
5	Repurposing of Kinase Inhibitors for Treatment of COVID-19. Pharmaceutical Research, 2020, 37, 167.	3.5	102
6	A Sensitive Yellow Fever Virus Entry Reporter Identifies Valosin-Containing Protein (VCP/p97) as an Essential Host Factor for Flavivirus Uncoating. Proceedings (mdpi), 2020, 50, 147.	0.2	0
7	Hepatitis C virus NS3-4A protease regulates the lipid environment for RNA replication by cleaving host enzyme 24-dehydrocholesterol reductase. Journal of Biological Chemistry, 2020, 295, 12426-12436.	3.4	10
8	Current therapies under investigation for COVID-19: potential COVID-19 treatments. Canadian Journal of Physiology and Pharmacology, 2020, 98, 483-489.	1.4	6
9	A Sensitive Yellow Fever Virus Entry Reporter Identifies Valosin-Containing Protein (VCP/p97) as an Essential Host Factor for Flavivirus Uncoating. MBio, 2020, 11, .	4.1	24
10	Small molecule degraders of the hepatitis C virus protease reduce susceptibility to resistance mutations. Nature Communications, 2019, 10, 3468.	12.8	124
11	Identification of small molecule inhibitors targeting the Zika virus envelope protein. Antiviral Research, 2019, 164, 147-153.	4.1	14
12	Small Molecules Targeting the Flavivirus E Protein with Broad-Spectrum Activity and Antiviral Efficacy <i>in Vivo</i> . ACS Infectious Diseases, 2019, 5, 460-472.	3.8	29
13	A call to arms: Unifying the fight against resistance. Science Signaling, 2018, 11, .	3.6	3
14	How small-molecule inhibitors of dengue-virus infection interfere with viral membrane fusion. ELife, 2018, 7, .	6.0	16
15	Discovery of Immunologically Inspired Small Molecules That Target the Viral Envelope Protein. ACS Infectious Diseases, 2018, 4, 1395-1406.	3.8	27
16	Inhibition of Flaviviruses by Targeting a Conserved Pocket on the Viral Envelope Protein. Cell Chemical Biology, 2018, 25, 1006-1016.e8.	5.2	68
17	Structure–Activity Relationship Study of QL47: A Broad-Spectrum Antiviral Agent. ACS Medicinal Chemistry Letters, 2017, 8, 344-349.	2.8	16
18	Discovery of host-targeted covalent inhibitors of dengue virus. Antiviral Research, 2017, 139, 171-179.	4.1	15

Priscilla L Yang

#	Article	IF	CITATIONS
19	Antiviral activity of N-(4-hydroxyphenyl) retinamide (4-HPR) against Zika virus. Antiviral Research, 2017, 147, 124-130.	4.1	29
20	GNF-2 Inhibits Dengue Virus by Targeting Abl Kinases and the Viral E Protein. Cell Chemical Biology, 2016, 23, 443-452.	5.2	57
21	Hepatitis C Virus Selectively Alters the Intracellular Localization of Desmosterol. ACS Chemical Biology, 2016, 11, 1827-1833.	3.4	20
22	Desmosterol Increases Lipid Bilayer Fluidity during Hepatitis C Virus Infection. ACS Infectious Diseases, 2016, 2, 852-862.	3.8	15
23	Lactimidomycin is a broad-spectrum inhibitor of dengue and other RNA viruses. Antiviral Research, 2016, 128, 57-62.	4.1	20
24	Identification and Characterization of a Novel Broad-Spectrum Virus Entry Inhibitor. Journal of Virology, 2016, 90, 4494-4510.	3.4	29
25	The Bioactive Lipid 4-Hydroxyphenyl Retinamide Inhibits Flavivirus Replication. Antimicrobial Agents and Chemotherapy, 2015, 59, 85-95.	3.2	43
26	Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE) Tj ETQq0 0 0 rgBT /Ov States of America, 2015, 112, E4354-63.	erlock 10 7.1	ff 50 467 Td (56
27	Targeting host lipid synthesis and metabolism to inhibit dengue and hepatitis C viruses. Antiviral Research, 2015, 124, 110-121.	4.1	66
28	Flaviviruses: Introduction to Dengue Viruses. , 2015, , 403-424.		2
29	Fluorescent Visualization of Src by Using Dasatinibâ€BODIPY. ChemBioChem, 2014, 15, 1317-1324.	2.6	16
30	The Small Molecules AZD0530 and Dasatinib Inhibit Dengue Virus RNA Replication via Fyn Kinase. Journal of Virology, 2013, 87, 7367-7381.	3.4	105
31	Small-Molecule Inhibitors of Dengue-Virus Entry. PLoS Pathogens, 2012, 8, e1002627.	4.7	80
32	Lipid Metabolite Profiling Identifies Desmosterol Metabolism as a New Antiviral Target for Hepatitis C Virus. Journal of the American Chemical Society, 2012, 134, 6896-6899.	13.7	41
33	Chemoproteomic Profiling Identifies Changes in DNA-PK as Markers of Early Dengue Virus Infection. ACS Chemical Biology, 2012, 7, 2019-2026.	3.4	8
34	Mutagenesis of the DI/DIII Linker in Dengue Virus Envelope Protein Impairs Viral Particle Assembly. Journal of Virology, 2012, 86, 7072-7083.	3.4	28
35	Leveraging kinase inhibitors to develop small molecule tools for imaging kinases by fluorescence microscopy. Molecular BioSystems, 2012, 8, 2523.	2.9	25
36	Anti-HCV drugs in the pipeline. Current Opinion in Virology, 2011, 1, 607-616.	5.4	56

Priscilla L Yang

#	Article	IF	CITATIONS
37	Peptide Inhibitors of Flavivirus Entry Derived from the E Protein Stem. Journal of Virology, 2010, 84, 12549-12554.	3.4	85
38	Immune effectors required for hepatitis B virus clearance. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 798-802.	7.1	206
39	Peptide Inhibitors of Dengue-Virus Entry Target a Late-Stage Fusion Intermediate. PLoS Pathogens, 2010, 6, e1000851.	4.7	113
40	Discovery of insect and human dengue virus host factors. Nature, 2009, 458, 1047-1050.	27.8	331
41	Targeting cancer with small molecule kinase inhibitors. Nature Reviews Cancer, 2009, 9, 28-39.	28.4	2,278
42	Identification of an Overabundant Cholesterol Precursor in Hepatitis B Virus Replicating Cells by Untargeted Lipid Metabolite Profiling. Journal of the American Chemical Society, 2009, 131, 5030-5031.	13.7	42
43	Rapid identification of inhibitors that interfere with poliovirus replication using a cell-based assay. Antiviral Research, 2008, 77, 232-236.	4.1	65
44	c-Src protein kinase inhibitors block assembly and maturation of dengue virus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 3520-3525.	7.1	120
45	Hydrodynamic injection of viral DNA: A mouse model of acute hepatitis B virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13825-13830.	7.1	353
46	Development of a genetic selection for catalytic antibodies. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 1691-1694.	2.2	4
47	Mutational analysis of the affinity maturation of antibody 48G7. Journal of Molecular Biology, 1999, 294, 1191-1201.	4.2	51
48	The Immunological Evolution of Catalysis. Science, 1996, 271, 1086-1091.	12.6	236