James E Melvin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1175817/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	REGULATION OF FLUID AND ELECTROLYTE SECRETION IN SALIVARY GLAND ACINAR CELLS. Annual Review of Physiology, 2005, 67, 445-469.	13.1	386
2	The Proteomes of Human Parotid and Submandibular/Sublingual Gland Salivas Collected as the Ductal Secretions. Journal of Proteome Research, 2008, 7, 1994-2006.	3.7	376
3	Salivary Acinar Cells from Aquaporin 5-deficient Mice Have Decreased Membrane Water Permeability and Altered Cell Volume Regulation. Journal of Biological Chemistry, 2001, 276, 23413-23420.	3.4	289
4	A Role for AQP5 in Activation of TRPV4 by Hypotonicity. Journal of Biological Chemistry, 2006, 281, 15485-15495.	3.4	221
5	Tmem16A Encodes the Ca2+-activated Clâ^' Channel in Mouse Submandibular Salivary Gland Acinar Cells. Journal of Biological Chemistry, 2010, 285, 12990-13001.	3.4	174
6	Loss of Hyperpolarization-activated Clâ^ Current in Salivary Acinar Cells from Clcn2 Knockout Mice. Journal of Biological Chemistry, 2002, 277, 23604-23611.	3.4	104
7	Defective Fluid Secretion and NaCl Absorption in the Parotid Glands of Na+/H+ Exchanger-deficient Mice. Journal of Biological Chemistry, 2001, 276, 27042-27050.	3.4	72
8	Regulation of membrane potential and fluid secretion by Ca2+-activated K+channels in mouse submandibular glands. Journal of Physiology, 2007, 581, 801-817.	2.9	71
9	The salivary gland fluid secretion mechanism. Journal of Medical Investigation, 2009, 56, 192-196.	O.5	70
10	A fluid secretion pathway unmasked by acinar-specific <i>Tmem16A</i> gene ablation in the adult mouse salivary gland. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 2263-2268.	7.1	67
11	Cftr and ENaC ion channels mediate NaCl absorption in the mouse submandibular gland. Journal of Physiology, 2010, 588, 713-724.	2.9	55
12	Apical maxi-K (K _{Ca} 1.1) channels mediate K ⁺ secretion by the mouse submandibular exocrine gland. American Journal of Physiology - Cell Physiology, 2008, 294, C810-C819.	4.6	54
13	Age and gender related differences in human parotid gland gene expression. Archives of Oral Biology, 2008, 53, 1058-1070.	1.8	49
14	Cl-/HCO3-exchange is acetazolamide sensitive and activated by a muscarinic receptor-induced [Ca2+]iincrease in salivary acinar cells. American Journal of Physiology - Renal Physiology, 2004, 286, G312-G320.	3.4	44
15	Molecular Identification and Physiological Roles of Parotid Acinar Cell Maxi-K Channels. Journal of Biological Chemistry, 2006, 281, 27964-27972.	3.4	41
16	Ae4 (Slc4a9) is an electroneutral monovalent cation-dependent Clâ^'/HCO3â^' exchanger. Journal of General Physiology, 2016, 147, 423-436.	1.9	37
17	Transcriptional profiling reveals gland-specific differential expression in the three major salivary glands of the adult mouse. Physiological Genomics, 2018, 50, 263-271.	2.3	37
18	Elevated Incidence of Dental Caries in a Mouse Model of Cystic Fibrosis. PLoS ONE, 2011, 6, e16549.	2.5	36

JAMES E MELVIN

#	Article	IF	CITATIONS
19	Muscarinic receptorâ€induced acidification in sublingual mucous acinar cells: loss of pH recovery in Na + â''H + exchangerâ€1 deficient mice. Journal of Physiology, 2000, 523, 139-146.	2.9	32
20	Ae4 (Slc4a9) Anion Exchanger Drives Clâ^' Uptake-dependent Fluid Secretion by Mouse Submandibular Gland Acinar Cells. Journal of Biological Chemistry, 2015, 290, 10677-10688.	3.4	30
21	<i>Clcn2</i> encodes the hyperpolarization-activated chloride channel in the ducts of mouse salivary glands. American Journal of Physiology - Renal Physiology, 2008, 295, G1058-G1067.	3.4	29
22	Knockout of the LRRC26 subunit reveals a primary role of LRRC26-containing BK channels in secretory epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E3739-E3747.	7.1	29
23	Allosteric modulation of β-cell M ₃ muscarinic acetylcholine receptors greatly improves glucose homeostasis in lean and obese mice. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 18684-18690.	7.1	22
24	The apical anion exchanger Slc26a6 promotes oxalate secretion by murine submandibular gland acinar cells. Journal of Biological Chemistry, 2018, 293, 6259-6268.	3.4	19
25	Sexual dimorphisms in the transcriptomes of murine salivary glands. FEBS Open Bio, 2019, 9, 947-958.	2.3	16
26	A Mathematical Model Supports a Key Role for Ae4 (Slc4a9) in Salivary Gland Secretion. Bulletin of Mathematical Biology, 2018, 80, 255-282.	1.9	13
27	<i>Slc4a11</i> disruption causes duct cell loss and impairs NaCl reabsorption in female mouse submandibular glands. Physiological Reports, 2019, 7, e14232.	1.7	5
28	The apical Na ⁺ –HCO ₃ ^{â^'} cotransporter Slc4a7 (NBCn1) does not contribute to bicarbonate transport by mouse salivary gland ducts. Journal of Cellular Physiology, 2019, 234, 16376-16388.	4.1	3
29	Ano6disruption impairs acinar cell regulatory volume decrease and protein secretion in murine submandibular salivary glands. Journal of Cellular Physiology, 2020, 235, 8533-8545.	4.1	0