
H Birkan Yilmaz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11755835/publications.pdf Version: 2024-02-01

H RIDKAN VILMAZ

#	Article	IF	CITATIONS
1	A Comprehensive Survey of Recent Advancements in Molecular Communication. IEEE Communications Surveys and Tutorials, 2016, 18, 1887-1919.	39.4	681
2	Energy model for communication via diffusion in nanonetworks. Nano Communication Networks, 2010, 1, 86-95.	2.9	361
3	Three-Dimensional Channel Characteristics for Molecular Communications With an Absorbing Receiver. IEEE Communications Letters, 2014, 18, 929-932.	4.1	290
4	Molecular MIMO: From Theory to Prototype. IEEE Journal on Selected Areas in Communications, 2016, 34, 600-614.	14.0	155
5	Interference effects on modulation techniques in diffusion based nanonetworks. Nano Communication Networks, 2012, 3, 65-73.	2.9	151
6	ISI Mitigation Techniques in Molecular Communication. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2015, 1, 202-216.	2.1	123
7	Molecular communications: channel model and physical layer techniques. IEEE Wireless Communications, 2016, 23, 120-127.	9.0	89
8	Simulation study of molecular communication systems with an absorbing receiver: Modulation and ISI mitigation techniques. Simulation Modelling Practice and Theory, 2014, 49, 136-150.	3.8	75
9	Effect of Receptor Density and Size on Signal Reception in Molecular Communication via Diffusion With an Absorbing Receiver. IEEE Communications Letters, 2015, 19, 155-158.	4.1	75
10	Arrival modelling for molecular communication via diffusion. Electronics Letters, 2014, 50, 1667-1669.	1.0	65
11	Effect of Degradation in Molecular Communication: Impairment or Enhancement?. IEEE Transactions on Molecular, Biological, and Multi-Scale Communications, 2015, 1, 217-229.	2.1	64
12	A Survey on Modulation Techniques in Molecular Communication via Diffusion. IEEE Communications Surveys and Tutorials, 2021, 23, 7-28.	39.4	55
13	Machine learning based channel modeling for molecular MIMO communications. , 2017, , .		42
14	Arrival Modeling and Error Analysis for Molecular Communication via Diffusion with Drift. , 2015, , .		32
15	A tunnel-based approach for signal shaping in molecular communication. , 2013, , .		30
16	Chemical Propagation Pattern for Molecular Communications. IEEE Wireless Communications Letters, 2017, 6, 226-229.	5.0	26
17	Energy efficient ISI mitigation for communication via diffusion. , 2014, , .		24
18	Transmitter Localization in Vessel-Like Diffusive Channels Using Ring-Shaped Molecular Receivers. IEEE Communications Letters, 2018, 22, 2511-2514.	4.1	24

H BIRKAN YILMAZ

#	Article	IF	CITATIONS
19	Array Gain Analysis in Molecular MIMO Communications. IEEE Access, 2018, 6, 61091-61102.	4.2	23
20	Detection algorithms for molecular MIMO. , 2015, , .		18
21	Molecular Signal Modeling of a Partially Counting Absorbing Spherical Receiver. IEEE Transactions on Communications, 2018, 66, 6237-6246.	7.8	18
22	Two-Way Molecular Communications. IEEE Transactions on Communications, 2020, 68, 3550-3563.	7.8	18
23	Effective Enzyme Deployment for Degradation of Interference Molecules in Molecular Communication. , 2017, , .		17
24	ISI-Aware Modeling and Achievable Rate Analysis of the Diffusion Channel. IEEE Communications Letters, 2016, 20, 1729-1732.	4.1	16
25	A machine learning approach to model the received signal in molecular communications. , 2017, , .		16
26	Energy model for vesicle-based active transport molecular communication. , 2016, , .		15
27	A Time-Slotted Molecular Communication (TS-MOC): Framework and Time-Slot Errors. IEEE Access, 2019, 7, 78146-78158.	4.2	12
28	Channel capacity of calcium signalling based on inter-cellular calcium waves in astrocytes. , 2013, , .		11
29	Synchronization for Diffusion-Based Molecular Communication Systems via Faster Molecules. , 2019, ,		10
30	Multiple transmitter localization via single receiver in 3-D molecular communication via diffusion. , 2022, 124, 103185.		10
31	Linearity of Sequential Molecular Signals in Turbulent Diffusion Channels. , 2019, , .		7
32	Two way molecular communications. , 2018, , .		7
33	Reception enhancement with protrusions in communication via diffusion. , 2013, , .		6
34	Effective interâ€symbol interference mitigation with a limited amount of enzymes in molecular communications. Transactions on Emerging Telecommunications Technologies, 2017, 28, e3106.	3.9	6
35	Block Synchronization for Diffusion-based Molecular Communication Systems. , 2018, , .		6
36	Analytical modeling and resource planning for cognitive radio systems. Wireless Communications and Mobile Computing, 2012, 12, 277-292.	1.2	5

H BIRKAN YILMAZ

#	Article	IF	CITATIONS
37	MOL-eye: A new metric for the performance evaluation of a molecular signal. , 2018, , .		5
38	Transmit Signal Shaping for Molecular Communication. IEEE Wireless Communications Letters, 2021, 10, 1459-1463.	5.0	5
39	Effect of receiver shape and volume on the Alzheimer disease for molecular communication via diffusion. IET Nanobiotechnology, 2020, 14, 602-608.	3.8	5
40	An entire architecture for Cognitive Radio Networks. , 2008, , .		4
41	Simulation Study and Analysis of Diffusive Molecular Communications With an Apertured Plane. IEEE Transactions on Nanobioscience, 2020, 19, 468-476.	3.3	4
42	Resource planning in cognitive radio networks. , 2009, , .		3
43	Optimal relaying in molecular communications. Nano Communication Networks, 2022, 32-33, 100404.	2.9	3
44	Analytical Investigation of Long-Time Diffusion Dynamics in a Synaptic Channel With Glial Cells. IEEE Communications Letters, 2021, 25, 3444-3448.	4.1	2
45	Probability Distribution of a Signal's Peak Time in a Molecular Diffusive Media. IEEE Communications Letters, 2021, 25, 3833-3837.	4.1	1
46	Voxel-based simulation approach for molecular communications via diffusion. Nano Communication Networks, 2018, 18, 27-33.	2.9	0
47	Estimating Capture Probabilities for Complex Topologies in 2D Molecular Communication via Diffusion Channel using Artificial Neural Networks. , 2021, , .		0
48	Modulation in Molecular Signaling. , 2018, , 1-6.		0
49	Modulation in Molecular Signaling. , 2020, , 910-915.		О