
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11755493/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	H ₂ S as a Physiologic Vasorelaxant: Hypertension in Mice with Deletion of Cystathionine γ-Lyase. Science, 2008, 322, 587-590.	12.6	2,104
2	Carbon Monoxide: Endogenous Production, Physiological Functions, and Pharmacological Applications. Pharmacological Reviews, 2005, 57, 585-630.	16.0	822
3	Hydrogen Sulfide Protects Against Cellular Senescence <i>via S</i> -Sulfhydration of Keap1 and Activation of Nrf2. Antioxidants and Redox Signaling, 2013, 18, 1906-1919.	5.4	484
4	Activation of KATPchannels by H2S in rat insulin-secreting cells and the underlying mechanisms. Journal of Physiology, 2005, 569, 519-531.	2.9	426
5	Hydrogen sulfide (H ₂ S) metabolism in mitochondria and its regulatory role in energy production. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2943-2948.	7.1	397
6	Decreased Endogenous Production of Hydrogen Sulfide Accelerates Atherosclerosis. Circulation, 2013, 127, 2523-2534.	1.6	322
7	Carbon monoxideâ€induced vasorelaxation and the underlying mechanisms. British Journal of Pharmacology, 1997, 121, 927-934.	5.4	288
8	Proâ€apoptotic effect of endogenous H 2 S on human aorta smooth muscle cells. FASEB Journal, 2006, 20, 553-555.	0.5	286
9	Dietary approach to attenuate oxidative stress, hypertension, and inflammation in the cardiovascular system. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 7094-7099.	7.1	258
10	Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13829-13834.	7.1	254
11	Direct Stimulation of KATP Channels by Exogenous and Endogenous Hydrogen Sulfide in Vascular Smooth Muscle Cells. Molecular Pharmacology, 2005, 68, 1757-1764.	2.3	250
12	The Chemical Modification of KCa Channels by Carbon Monoxide in Vascular Smooth Muscle Cells. Journal of Biological Chemistry, 1997, 272, 8222-8226.	3.4	222
13	The direct effect of carbon monoxide on K Ca channels in vascular smooth muscle cells. Pflugers Archiv European Journal of Physiology, 1997, 434, 285-291.	2.8	211
14	Increased Methylglyoxal and Oxidative Stress in Hypertensive Rat Vascular Smooth Muscle Cells. Hypertension, 2002, 39, 809-814.	2.7	209
15	Pancreatic islet overproduction of H2S and suppressed insulin release in Zucker diabetic rats. Laboratory Investigation, 2009, 89, 59-67.	3.7	190
16	Oxidative stress and aging: Is methylglyoxal the hidden enemy?This review is one of a selection of papers published in a Special Issue on Oxidative Stress in Health and Disease Canadian Journal of Physiology and Pharmacology, 2010, 88, 273-284.	1.4	180
17	Molecular Mechanism for H ₂ S-Induced Activation of K _{ATP} Channels. Antioxidants and Redox Signaling, 2010, 12, 1167-1178.	5.4	179
18	Oxygen-sensitive mitochondrial accumulation of cystathionine β-synthase mediated by Lon protease. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 12679-12684.	7.1	175

#	Article	IF	CITATIONS
19	H2S, Endoplasmic Reticulum Stress, and Apoptosis of Insulin-secreting Beta Cells. Journal of Biological Chemistry, 2007, 282, 16567-16576.	3.4	174
20	Enhanced superoxide anion formation in vascular tissues from spontaneously hypertensive and desoxycorticosterone acetate-salt hypertensive rats. Journal of Hypertension, 2001, 19, 741-748.	0.5	167
21	Oxidative Stress in Hypertension. Clinical and Experimental Hypertension, 2004, 26, 593-601.	1.3	164
22	Effects of hydrogen sulfide on homocysteine-induced oxidative stress in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2006, 351, 485-491.	2.1	164
23	S- Sulfhydration of ATP synthase by hydrogen sulfide stimulates mitochondrial bioenergetics. Pharmacological Research, 2016, 113, 116-124.	7.1	156
24	Cystathionine γ-Lyase Overexpression Inhibits Cell Proliferation via a H2S-dependent Modulation of ERK1/2 Phosphorylation and p21Cip/WAK-1. Journal of Biological Chemistry, 2004, 279, 49199-49205.	3.4	142
25	Cystathionine gamma-lyase deficiency and overproliferation of smooth muscle cells. Cardiovascular Research, 2010, 86, 487-495.	3.8	142
26	Interaction of hydrogen sulfide with ion channels. Clinical and Experimental Pharmacology and Physiology, 2010, 37, 753-763.	1.9	138
27	Hydrogen sulfide and the liver. Nitric Oxide - Biology and Chemistry, 2014, 41, 62-71.	2.7	134
28	Chronic Methylglyoxal Infusion by Minipump Causes Pancreatic β-Cell Dysfunction and Induces Type 2 Diabetes in Sprague-Dawley Rats. Diabetes, 2011, 60, 899-908.	0.6	131
29	Protective Effect of Hydrogen Sulfide on Balloon Injury-Induced Neointima Hyperplasia in Rat Carotid Arteries. American Journal of Pathology, 2007, 170, 1406-1414.	3.8	128
30	Calcium and polyamine regulated calciumâ€sensing receptors in cardiac tissues. FEBS Journal, 2003, 270, 2680-2688.	0.2	126
31	Lipoic acid prevents hypertension, hyperglycemia, and the increase in heart mitochondrial superoxide production. American Journal of Hypertension, 2003, 16, 173-179.	2.0	126
32	Methylglyoxal-induced nitric oxide and peroxynitrite production in vascular smooth muscle cells. Free Radical Biology and Medicine, 2005, 38, 286-293.	2.9	126
33	Proinflammatory and proapoptotic effects of methylglyoxal on neutrophils from patients with type 2 diabetes mellitus. Clinical Biochemistry, 2007, 40, 1232-1239.	1.9	119
34	H ₂ S Is an Endothelium-Derived Hyperpolarizing Factor. Antioxidants and Redox Signaling, 2013, 19, 1634-1646.	5.4	119
35	Hydrogen Sulfide and the Pathogenesis of Atherosclerosis. Antioxidants and Redox Signaling, 2014, 20, 805-817.	5.4	113
36	Increased methylglyoxal and advanced glycation end products in kidney from spontaneously hypertensive rats. Kidney International, 2004, 66, 2315-2321.	5.2	109

#	Article	IF	CITATIONS
37	Vascular methylglyoxal metabolism and the development of hypertension. Journal of Hypertension, 2005, 23, 1565-1573.	0.5	108
38	Methylglyoxal scavengers attenuate endothelial dysfunction induced by methylglyoxal and high concentrations of glucose. British Journal of Pharmacology, 2010, 161, 1843-1856.	5.4	102
39	Methylglyoxal-induced mitochondrial dysfunction in vascular smooth muscle cells. Biochemical Pharmacology, 2009, 77, 1709-1716.	4.4	99
40	Structural and functional changes in human insulin induced by methylglyoxal. FASEB Journal, 2006, 20, 1555-1557.	0.5	97
41	Methylglyoxal, oxidative stress, and hypertension. Canadian Journal of Physiology and Pharmacology, 2006, 84, 1229-1238.	1.4	95
42	Accumulation of endogenous methylglyoxal impaired insulin signaling in adipose tissue of fructose-fed rats. Molecular and Cellular Biochemistry, 2007, 306, 133-139.	3.1	86
43	Induction of heme oxygenase-1 and stimulation of cGMP production by hemin in aortic tissues from hypertensive rats. Blood, 2003, 101, 3893-3900.	1.4	80
44	Methylglyoxal, protein binding and biological samples: Are we getting the true measure?. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2009, 877, 1093-1100.	2.3	80
45	Alagebrium attenuates acute methylglyoxalâ€induced glucose intolerance in Spragueâ€Đawley rats. British Journal of Pharmacology, 2010, 159, 166-175.	5.4	80
46	Different mechanisms underlying the stimulation of KCa channels by nitric oxide and carbon monoxide. Journal of Clinical Investigation, 2002, 110, 691-700.	8.2	80
47	Methylglyoxal and Advanced Glycation Endproducts: New Therapeutic Horizons?. Recent Patents on Cardiovascular Drug Discovery, 2007, 2, 89-99.	1.5	78
48	Attenuation of hypertension development by scavenging methylglyoxal in fructose-treated rats. Journal of Hypertension, 2008, 26, 765-772.	0.5	73
49	Hydrogen sulfide mediates the anti-survival effect of sulforaphane on human prostate cancer cells. Toxicology and Applied Pharmacology, 2011, 257, 420-428.	2.8	73
50	Increased neointimal formation in cystathionine gamma-lyase deficient mice: Role of hydrogen sulfide in α5β1-integrin and matrix metalloproteinase-2 expression in smooth muscle cells. Journal of Molecular and Cellular Cardiology, 2012, 52, 677-688.	1.9	71
51	Hydrogen Sulfide Impairs Glucose Utilization and Increases Gluconeogenesis in Hepatocytes. Endocrinology, 2013, 154, 114-126.	2.8	71
52	The Pathogenic Role of Cystathionine Î ³ -Lyase/Hydrogen Sulfide in Streptozotocin-Induced Diabetes in Mice. American Journal of Pathology, 2011, 179, 869-879.	3.8	69
53	FREE RADICAL GENERATION BY METHYLGLYOXAL IN TISSUES. Drug Metabolism and Drug Interactions, 2008, 23, 151-174.	0.3	68
54	Involvement of exogenous H2S in recovery of cardioprotection from ischemic post-conditioning via increase of autophagy in the aged hearts. International Journal of Cardiology, 2016, 220, 681-692.	1.7	68

#	Article	IF	CITATIONS
55	Sustained Normalization of High Blood Pressure in Spontaneously Hypertensive Rats by Implanted Hemin Pump. Hypertension, 2006, 48, 685-692.	2.7	66
56	Methylglyoxal production in vascular smooth muscle cells from different metabolic precursors. Metabolism: Clinical and Experimental, 2008, 57, 1211-1220.	3.4	66
57	Hydrogen Sulfide Represses Androgen Receptor Transactivation by Targeting at the Second Zinc Finger Module. Journal of Biological Chemistry, 2014, 289, 20824-20835.	3.4	63
58	The role of endothelial cell adhesion molecules <scp>P</scp> â€selectin, <scp>E</scp> â€selectin and intercellular adhesion moleculeâ€1 in leucocyte recruitment induced by exogenous methylglyoxal. Immunology, 2012, 137, 65-79.	4.4	62
59	The impaired glutathione system and its up-regulation by sulforaphane in vascular smooth muscle cells from spontaneously hypertensive rats. Journal of Hypertension, 2001, 19, 1819-1825.	0.5	61
60	H2S-induced S-sulfhydration of pyruvate carboxylase contributes to gluconeogenesis in liver cells. Biochimica Et Biophysica Acta - General Subjects, 2015, 1850, 2293-2303.	2.4	61
61	Upregulation of aldolase B and overproduction of methylglyoxal in vascular tissues from rats with metabolic syndrome. Cardiovascular Research, 2011, 92, 494-503.	3.8	59
62	Fructose-induced peroxynitrite production is mediated by methylglyoxal in vascular smooth muscle cells. Life Sciences, 2006, 79, 2448-2454.	4.3	57
63	Decreased Gluconeogenesis in the Absence of Cystathionine Gamma-Lyase and the Underlying Mechanisms. Antioxidants and Redox Signaling, 2016, 24, 129-140.	5.4	56
64	The Dietary Phase 2 Protein Inducer Sulforaphane Can Normalize the Kidney Epigenome and Improve Blood Pressure in Hypertensive Rats. American Journal of Hypertension, 2012, 25, 229-235.	2.0	55
65	N-acetylcysteine improves nitric oxide and α-adrenergic pathways in mesenteric beds of spontaneously hypertensive rats. American Journal of Hypertension, 2003, 16, 577-584.	2.0	54
66	The effects of parathyroid hormone on L-type voltage-dependent calcium channel currents in vascular smooth muscle cells and ventricular myocytes are mediated by a cyclic AMP dependent mechanism. FEBS Letters, 1991, 282, 331-334.	2.8	52
67	Dietary approaches to positively influence fetal determinants of adult health. FASEB Journal, 2006, 20, 371-373.	0.5	51
68	Attenuation of Hypertension Development by Aminoguanidine in Spontaneously Hypertensive Rats: Role of Methylglyoxal. American Journal of Hypertension, 2007, 20, 629-636.	2.0	51
69	Hydrogen sulfide inhibits the translational expression of hypoxiaâ€inducible factorâ€1α. British Journal of Pharmacology, 2012, 167, 1492-1505.	5.4	51
70	Mediation of exogenous hydrogen sulfide in recovery of ischemic post-conditioning-induced cardioprotection via down-regulating oxidative stress and up-regulating PI3K/Akt/GSK-3β pathway in isolated aging rat hearts. Cell and Bioscience, 2015, 5, 11.	4.8	51
71	Beneficial and deleterious effects of rosiglitazone on hypertension development in spontaneously hypertensive rats. American Journal of Hypertension, 2004, 17, 749-756.	2.0	50
72	Cystathionine gamma-lyase/hydrogen sulfide system is essential for adipogenesis and fat mass accumulation in mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 165-176.	2.4	50

#	Article	IF	CITATIONS
73	Increased Methylglyoxal Formation with Upregulation of Renin Angiotensin System in Fructose Fed Sprague Dawley Rats. PLoS ONE, 2013, 8, e74212.	2.5	47
74	Methylglyoxal Mediates Adipocyte Proliferation by Increasing Phosphorylation of Akt1. PLoS ONE, 2012, 7, e36610.	2.5	47
75	The pro-oxidant role of methylglyoxal in mesenteric artery smooth muscle cells. Canadian Journal of Physiology and Pharmacology, 2005, 83, 63-68.	1.4	46
76	Stimulatory effect of CSE-generated H2S on hepatic mitochondrial biogenesis and the underlying mechanisms. Nitric Oxide - Biology and Chemistry, 2016, 58, 67-76.	2.7	46
77	Effects of Superoxide on Signaling Pathways in Smooth Muscle Cells From Rats. Hypertension, 1999, 34, 1247-1253.	2.7	44
78	Is methylglyoxal a causative factor for hypertension development?This paper is one of a selection of papers published in this Special Issue, entitled Young Investigator's Forum Canadian Journal of Physiology and Pharmacology, 2006, 84, 129-139.	1.4	44
79	Interaction of Methylglyoxal and Hydrogen Sulfide in Rat Vascular Smooth Muscle Cells. Antioxidants and Redox Signaling, 2010, 12, 1093-1100.	5.4	44
80	Modification of Akt1 by methylglyoxal promotes the proliferation of vascular smooth muscle cells. FASEB Journal, 2011, 25, 1746-1757.	0.5	42
81	The interaction of estrogen and CSE/H ₂ S pathway in the development of atherosclerosis. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 312, H406-H414.	3.2	42
82	H2S-Mediated Protein S-Sulfhydration: A Prediction for Its Formation and Regulation. Molecules, 2017, 22, 1334.	3.8	42
83	Exogenous H2S contributes to recovery of ischemic post-conditioning-induced cardioprotection by decrease of ROS level via down-regulation of NF-κB and JAK2-STAT3 pathways in the aging cardiomyocytes. Cell and Bioscience, 2016, 6, 26.	4.8	41
84	Different mechanisms underlying the stimulation of KCa channels by nitric oxide and carbon monoxide. Journal of Clinical Investigation, 2002, 110, 691-700.	8.2	41
85	Altered L-type Ca2+ channel currents in vascular smooth muscle cells from experimental diabetic rats. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 278, H714-H722.	3.2	40
86	Novel cardiac protective effects of urea: from shark to rat. British Journal of Pharmacology, 1999, 128, 1477-1484.	5.4	39
87	H2S protects lipopolysaccharide-induced inflammation by blocking NFκB transactivation in endothelial cells. Toxicology and Applied Pharmacology, 2018, 338, 20-29.	2.8	39
88	Arginine Attenuates Methylglyoxal- and High Glucose-Induced Endothelial Dysfunction and Oxidative Stress by an Endothelial Nitric-Oxide Synthase-Independent Mechanism. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 196-204.	2.5	37
89	Exogenous hydrogen sulfide restores cardioprotection of ischemic post-conditioning via inhibition of mPTP opening in the aging cardiomyocytes. Cell and Bioscience, 2015, 5, 43.	4.8	37
90	The interaction of IGF-1/IGF-1R and hydrogen sulfide on the proliferation of mouse primary vascular smooth muscle cells. Biochemical Pharmacology, 2018, 149, 143-152.	4.4	37

#	Article	IF	CITATIONS
91	Altered Expression of BK Channel β1 Subunit in Vascular Tissues from Spontaneously Hypertensive Rats. American Journal of Hypertension, 2006, 19, 678-685.	2.0	35
92	Hydrogen Sulfide and Glucose Homeostasis: A Tale of Sweet and the Stink. Antioxidants and Redox Signaling, 2018, 28, 1463-1482.	5.4	35
93	Hydrogen sulfide guards myoblasts from ferroptosis by inhibiting ALOX12 acetylation. Cellular Signalling, 2021, 78, 109870.	3.6	35
94	Exogenous hydrogen sulfide attenuates diabetic myocardial injury through cardiac mitochondrial protection. Molecular and Cellular Biochemistry, 2012, 371, 187-198.	3.1	34
95	Inhibition by cyclic AMP of basal and induced inositol phosphate production in cultured aortic smooth muscle cells from Wistar- Kyoto and spontaneously hypertensive rats. Journal of Hypertension, 1996, 14, 593-599.	0.5	33
96	Deficiency of cystathionine gamma-lyase and hepatic cholesterol accumulation during mouse fatty liver development. Science Bulletin, 2015, 60, 336-347.	9.0	32
97	Hydrogen Sulfide Signaling Axis as a Target for Prostate Cancer Therapeutics. Prostate Cancer, 2016, 2016, 1-9.	0.6	32
98	Golgi Stress Response, Hydrogen Sulfide Metabolism, and Intracellular Calcium Homeostasis. Antioxidants and Redox Signaling, 2020, 32, 583-601.	5.4	31
99	Inhibition of vascular smooth muscle cell proliferation by chronic hemin treatment. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H999-H1007.	3.2	30
100	Increased expression of calciumâ€sensing receptors induced by oxâ€LDL amplifies apoptosis of cardiomyocytes during simulated ischaemia–reperfusion. Clinical and Experimental Pharmacology and Physiology, 2010, 37, e128-35.	1.9	30
101	Interaction of Hydrogen Sulfide and Estrogen on the Proliferation of Vascular Smooth Muscle Cells. PLoS ONE, 2012, 7, e41614.	2.5	30
102	Hydrogen sulfide signaling in regulation of cell behaviors. Nitric Oxide - Biology and Chemistry, 2020, 103, 9-19.	2.7	30
103	Interaction of Selective Amino Acid Residues of K _{Ca} Channels with Carbon Monoxide. Experimental Biology and Medicine, 2003, 228, 474-480.	2.4	28
104	Methylglyoxal modulates endothelial nitric oxide synthase-associated functions in EA.hy926 endothelial cells. Cardiovascular Diabetology, 2013, 12, 134.	6.8	28
105	Mediation of dopamine D2 receptors activation in post-conditioning-attenuated cardiomyocyte apoptosis. Experimental Cell Research, 2014, 323, 118-130.	2.6	26
106	Interaction of H _{2} S with Calcium Permeable Channels and Transporters. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-7.	4.0	26
107	Cystathionine gamma-lyase/H2S system suppresses hepatic acetyl-CoA accumulation and nonalcoholic fatty liver disease in mice. Life Sciences, 2020, 252, 117661.	4.3	26
108	Methylglyoxal, a Reactive Glucose Metabolite, Increases Renin Angiotensin Aldosterone and Blood Pressure in Male Sprague-Dawley Rats. American Journal of Hypertension, 2014, 27, 308-316.	2.0	24

#	Article	IF	CITATIONS
109	Thioredoxin 1 regulation of protein S -desulfhydration. Biochemistry and Biophysics Reports, 2016, 5, 27-34.	1.3	24
110	Trend in H2S Biology and Medicine Research—A Bibliometric Analysis. Molecules, 2017, 22, 2087.	3.8	24
111	The changes in contractile status of single vascular smooth muscle cells and ventricular cells induced by bPTH-(1–34). Life Sciences, 1993, 52, 793-801.	4.3	22
112	Enhanced inhibition by melatonin of α-adrenoceptor- induced aortic contraction and inositol phosphate production in vascular smooth muscle cells from spontaneously hypertensive rats. Journal of Hypertension, 1998, 16, 339-347.	0.5	22
113	Uncoupling of eNOS contributes to redox-sensitive leukocyte recruitment and microvascular leakage elicited by methylglyoxal. Biochemical Pharmacology, 2013, 86, 1762-1774.	4.4	20
114	Hydrogen Sulfide Releasing Aspirin, ACS14, Attenuates High Glucose-Induced Increased Methylglyoxal and Oxidative Stress in Cultured Vascular Smooth Muscle Cells. PLoS ONE, 2014, 9, e97315.	2.5	20
115	Hydrogen sulfide and the metabolic syndrome. Expert Review of Clinical Pharmacology, 2011, 4, 63-73.	3.1	19
116	Aldolase B Knockdown Prevents High Glucose-Induced Methylglyoxal Overproduction and Cellular Dysfunction in Endothelial Cells. PLoS ONE, 2012, 7, e41495.	2.5	19
117	Modulation of methylglyoxal and glutathione by soybean isoflavones in mild streptozotocin-induced diabetic rats. Nutrition, Metabolism and Cardiovascular Diseases, 2008, 18, 618-623.	2.6	18
118	Age-Dependent Allergic Asthma Development and Cystathionine Gamma-Lyase Deficiency. Antioxidants and Redox Signaling, 2017, 27, 931-944.	5.4	18
119	Hydrogen sulfide and hepatic lipid metabolism – a critical pairing for liver health. British Journal of Pharmacology, 2020, 177, 757-768.	5.4	18
120	Abnormal Ca2+ signalling in vascular endothelial cells from spontaneously hypertensive rats: role of free radicals. Journal of Hypertension, 2001, 19, 721-730.	0.5	17
121	Exogenous H2S restores ischemic post-conditioning-induced cardioprotection through inhibiting endoplasmic reticulum stress in the aged cardiomyocytes. Cell and Bioscience, 2017, 7, 67.	4.8	17
122	Efflux inhibition by H2S confers sensitivity to doxorubicin-induced cell death in liver cancer cells. Life Sciences, 2018, 213, 116-125.	4.3	17
123	Superoxide Anion-Induced Formation of Inositol Phosphates Involves Tyrosine Kinase Activation in Smooth Muscle Cells from Rat Mesenteric Artery. Biochemical and Biophysical Research Communications, 1999, 259, 239-243.	2.1	15
124	Increased Renal Methylglyoxal Formation with Down-Regulation of PGC-1α-FBPase Pathway in Cystathionine γ-Lyase Knockout Mice. PLoS ONE, 2011, 6, e29592.	2.5	15
125	Reversal of Sp1 transactivation and TGFβ1/SMAD1 signaling by H2S prevent nickel-induced fibroblast activation. Toxicology and Applied Pharmacology, 2018, 356, 25-35.	2.8	15
126	Kinin B2 receptor-mediated contraction of tail arteries from normal or streptozotocin-induced diabetic rats. British Journal of Pharmacology, 1998, 125, 143-151.	5.4	14

#	Article	IF	CITATIONS
127	Regulation of methylglyoxal-elicited leukocyte recruitment by endothelial SCK1/GSK3 signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 2481-2491.	4.1	14
128	The functional expression of calcium-sensing receptors in BRL cells and related signal transduction pathway responsible for intracellular calcium elevation. Molecular and Cellular Biochemistry, 2010, 343, 13-19.	3.1	13
129	Gasotransmitter signaling in energy homeostasis and metabolic disorders. Free Radical Research, 2021, 55, 83-105.	3.3	13
130	Modification by solvents of the action of nifedipine on calcium channel currents in neuroblastoma cells. Naunyn-Schmiedeberg's Archives of Pharmacology, 1992, 345, 478-84.	3.0	12
131	The Role of Carbon Monoxide as a Gasotransmitter in Cardiovascular and Metabolic Regulation. , 2012, , 37-70.		12
132	Upâ€regulation of aldolase <scp>A</scp> and methylglyoxal production in adipocytes. British Journal of Pharmacology, 2013, 168, 1639-1646.	5.4	11
133	Tetraethylammonium-evoked oscillatory contractions of rat tail artery: A K-K model. Canadian Journal of Physiology and Pharmacology, 2000, 78, 696-707.	1.4	10
134	Dual effects of fructose on ChREBP and FoxO1/3α are responsible for AldoB up-regulation and vascular remodelling. Clinical Science, 2017, 131, 309-325.	4.3	10
135	H ₂ S-stimulated bioenergetics in chicken erythrocytes and the underlying mechanism. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2020, 319, R69-R78.	1.8	10
136	Cystathionine gammaâ€lyase/H 2 S signaling facilitates myogenesis under aging and injury condition. FASEB Journal, 2021, 35, e21511.	0.5	10
137	Sulphonylureas induced vasorelaxation of mouse arteries. European Journal of Pharmacology, 2007, 577, 124-128.	3.5	9
138	Involvement of the cyclic GMP pathway in the superoxide-induced IP3 formation in vascular smooth muscle cells. Journal of Hypertension, 2000, 18, 1057-1064.	0.5	8
139	The interaction of disulfiram and H2S metabolism in inhibition of aldehyde dehydrogenase activity and liver cancer cell growth. Toxicology and Applied Pharmacology, 2021, 426, 115642.	2.8	6
140	Deficiency of cystathionine gamma-lyase promotes aortic elastolysis and medial degeneration in aged mice. Journal of Molecular and Cellular Cardiology, 2022, 171, 30-44.	1.9	6
141	Effect of hydrogen sulfide on glycolysisâ€based energy production in mouse erythrocytes. Journal of Cellular Physiology, 2022, 237, 763-773.	4.1	4
142	Identification of a Novel Bacterial K+ Channel. Journal of Membrane Biology, 2011, 242, 153-164.	2.1	3
143	Methylglyoxal, Oxidative Stress, and Aging. , 2010, , 149-167.		3
144	Correlation of the Altered Vascular Effects of Carbon Monoxide and the Cardiovascular		1

Complications of Diabetes. , 2002, , 31-41.

#	Article	IF	CITATIONS
145	Methylglyoxal and Insulin Resistance. , 2008, , 193-208.		1
146	Insulin, AGE and hypertension. Journal of Hypertension, 2005, 23, 1605.	0.5	0
147	The Roles of Carbon Monoxide in the Pathogenesis of Diabetes and Its Vascular Complications. , 2001, , 213-232.		0
148	The Molecular Mechanisms Underlying the Effects of Carbon Monoxide on Calcium-Activated K+ Channels. , 2004, , 231-247.		0