S Ansar Ahmed

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11754257/publications.pdf Version: 2024-02-01

S ANSAD AHMED

#	Article	IF	CITATIONS
1	Phenotypic Drift in Lupus-Prone MRL/lpr Mice: Potential Roles of MicroRNAs and Gut Microbiota. ImmunoHorizons, 2022, 6, 36-46.	1.8	4
2	Epigenetic Contribution and Genomic Imprinting Dlk1-Dio3 miRNAs in Systemic Lupus Erythematosus. Genes, 2021, 12, 680.	2.4	11
3	EGR2 is elevated and positively regulates inflammatory IFNÎ ³ production in lupus CD4+ T cells. BMC Immunology, 2020, 21, 41.	2.2	5
4	Low-dose 17α-ethinyl estradiol (EE) exposure exacerbates lupus renal disease and modulates immune responses to TLR7/9 agonists in genetically autoimmune-prone mice. Scientific Reports, 2020, 10, 5210.	3.3	10
5	17β-Estradiol and 17α-Ethinyl Estradiol Exhibit Immunologic and Epigenetic Regulatory Effects in NZB/WF1 Female Mice. Endocrinology, 2019, 160, 101-118.	2.8	13
6	Gut Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus. Applied and Environmental Microbiology, 2018, 84, .	3.1	223
7	Our Environment Shapes Us: The Importance of Environment and Sex Differences in Regulation of Autoantibody Production. Frontiers in Immunology, 2018, 9, 478.	4.8	54
8	Antibiotics ameliorate lupus-like symptoms in mice. Scientific Reports, 2017, 7, 13675.	3.3	93
9	Commercial rodent diets differentially regulate autoimmune glomerulonephritis, epigenetics and microbiota in MRL/lpr mice. International Immunology, 2017, 29, 263-276.	4.0	30
10	MicroRNA, an Important Epigenetic Regulator of Immunity and Autoimmunity. , 2017, , 223-258.		1
11	Control of lupus nephritis by changes of gut microbiota. Microbiome, 2017, 5, 73.	11.1	245
12	Neutrophils and neutrophil serine proteases are increased in the spleens of estrogen-treated C57BL/6 mice and several strains of spontaneous lupus-prone mice. PLoS ONE, 2017, 12, e0172105.	2.5	26
13	Characterization of basal and lipopolysaccharide-induced microRNA expression in equine peripheral blood mononuclear cells using Next-Generation Sequencing. PLoS ONE, 2017, 12, e0177664.	2.5	7
14	The Upregulation of Genomic Imprinted DLK1-Dio3 miRNAs in Murine Lupus Is Associated with Global DNA Hypomethylation. PLoS ONE, 2016, 11, e0153509.	2.5	34
15	Epigenetic Regulation of Non-Lymphoid Cells by Bisphenol A, a Model Endocrine Disrupter: Potential Implications for Immunoregulation. Frontiers in Endocrinology, 2015, 6, 91.	3.5	24
16	Regulation of IL-17 in autoimmune diseases by transcriptional factors and microRNAs. Frontiers in Genetics, 2015, 6, 236.	2.3	46
17	Paradoxical Effects of All-Trans-Retinoic Acid on Lupus-Like Disease in the MRL/lpr Mouse Model. PLoS ONE, 2015, 10, e0118176.	2.5	42
18	Sex differences and estrogen regulation of miRNAs in lupus, a prototypical autoimmune disease. Cellular Immunology, 2015, 294, 70-79.	3.0	33

S ANSAR AHMED

#	Article	IF	CITATIONS
19	Cutting Edge: Plasmacytoid Dendritic Cells in Late-Stage Lupus Mice Defective in Producing IFN-α. Journal of Immunology, 2015, 195, 4578-4582.	0.8	18
20	The Immune System Is a Natural Target for Estrogen Action: Opposing Effects of Estrogen in Two Prototypical Autoimmune Diseases. Frontiers in Immunology, 2015, 6, 635.	4.8	313
21	Sexual dimorphism of miRNA expression: a new perspective in understanding the sex bias of autoimmune diseases. Therapeutics and Clinical Risk Management, 2014, 10, 151.	2.0	93
22	Estrogen and Signaling in the Cells of Immune System. Advances in Neuroimmune Biology, 2012, 3, 73-93.	0.7	24
23	MicroRNA, a new paradigm for understanding immunoregulation, inflammation, and autoimmune diseases. Translational Research, 2011, 157, 163-179.	5.0	379
24	Serine protease inhibitor, 4-(2-aminoethyl)-benzene sulfonyl fluoride, impairs IL-12-induced activation of pSTAT4β, NFκB, and select pro-inflammatory mediators from estrogen-treated mice. Immunobiology, 2011, 216, 1264-1273.	1.9	3
25	Identification of a Common Lupus Disease-Associated microRNA Expression Pattern in Three Different Murine Models of Lupus. PLoS ONE, 2010, 5, e14302.	2.5	155
26	Effects of Sex Steroids on Innate and Adaptive Immunity. , 2010, , 19-51.		18
27	Signal Transducer and Activation of Transcription (STAT) 4β, a Shorter Isoform of Interleukin-12-Induced STAT4, Is Preferentially Activated by Estrogen. Endocrinology, 2009, 150, 1310-1320.	2.8	18
28	Estrogen Regulates Transcription Factors STAT-1 and NF-κB to Promote Inducible Nitric Oxide Synthase and Inflammatory Responses. Journal of Immunology, 2009, 183, 6998-7005.	0.8	64
29	Development of a Storageâ€Compatible Microtiter Plateâ€Based Technique for Lymphocyte Proliferation. Journal of Immunoassay and Immunochemistry, 2008, 29, 128-142.	1.1	2
30	Suppression of LPS-induced Interferon-Î ³ and nitric oxide in splenic lymphocytes by select estrogen-regulated microRNAs: a novel mechanism of immune modulation. Blood, 2008, 112, 4591-4597.	1.4	185
31	Subacute oral administration of low dose 17 <i>β</i> -estradiol or 17 <i>α</i> -ethinyl estradiol does not markedly alter the immune system of young adult and aged C57BL/6 mice. Toxicological and Environmental Chemistry, 2008, 90, 421-435.	1.2	1
32	Estrogen selectively regulates chemokines in murine splenocytes. Journal of Leukocyte Biology, 2007, 81, 1065-1074.	3.3	37
33	IFN-γ-inducing transcription factor, T-bet is upregulated by estrogen in murine splenocytes: Role of IL-27 but not IL-12. Molecular Immunology, 2007, 44, 1808-1814.	2.2	65
34	Despite Inhibition of Nuclear Localization of NF-κB p65, c-Rel, and RelB, 17-β Estradiol Up-Regulates NF-κB Signaling in Mouse Splenocytes: The Potential Role of Bcl-3. Journal of Immunology, 2007, 179, 1776-1783.	0.8	58
35	Impact of Different Cell Isolation Techniques on Lymphocyte Viability and Function. Journal of Immunoassay and Immunochemistry, 2006, 27, 61-76.	1.1	41
36	Estrogen Up-Regulates Inducible Nitric Oxide Synthase, Nitric Oxide, and Cyclooxygenase-2 in Splenocytes Activated with T Cell Stimulants: Role of Interferon-Î ³ . Endocrinology, 2006, 147, 662-671.	2.8	71

S ANSAR AHMED

#	Article	IF	CITATIONS
37	Estrogen regulation of nitric oxide and inducible nitric oxide synthase (iNOS) in immune cells: Implications for immunity, autoimmune diseases, and apoptosis. Nitric Oxide - Biology and Chemistry, 2006, 15, 177-186.	2.7	140
38	Interferon regulatory factor-1 gene deletion decreases glomerulonephritis in MRL/lpr mice. European Journal of Immunology, 2006, 36, 1296-1308.	2.9	40
39	Estrogen, Interferon-gamma, and Lupus. , 2005, , 181-196.		1
40	Altered Splenocyte Function in Aged C57BL/6 Mice Prenatally Exposed to Diethylstilbestrol. Journal of Immunotoxicology, 2005, 2, 221-229.	1.7	2
41	Short-Term Administration of 17-β Estradiol to Outbred Male CD-1 Mice Induces Changes in the Immune System, but Not in Reproductive Organs. Immunological Investigations, 2005, 34, 1-26.	2.0	8
42	Short-Term Administration of 17-β Estradiol to Outbred Male CD-1 Mice Induces Changes in the Immune System, but Not in Reproductive Organs. Immunological Investigations, 2005, 34, 1-26.	2.0	8
43	Diethylstilbestrol exposure during fetal development affects thymus: studies in fourteen-month-old mice. Journal of Reproductive Immunology, 2004, 64, 75-90.	1.9	24
44	Perinatal Immunotoxicant Exposure and Autoimmune Disease. , 2004, , 215-227.		0
45	The immune system of geriatric mice is modulated by estrogenic endocrine disruptors (diethylstilbestrol, α-zearalanol, and genistein): Effects on interferon-γ. Toxicology, 2003, 194, 115-128.	4.2	36
46	Immunologic analysis of blood samples obtained from horses and stored for twenty-four hours. American Journal of Veterinary Research, 2003, 64, 1003-1009.	0.6	21
47	Immunomodulation by diethylstilbestrol is dose and gender related: effects on thymocyte apoptosis and mitogen-induced proliferation. Toxicology, 2002, 178, 101-118.	4.2	24
48	Mice lacking the gene for inducible or endothelial nitric oxide are resistant to sporocyst induced Sarcocystis neurona infections. Veterinary Parasitology, 2002, 103, 315-321.	1.8	13
49	EFFECTS OF LONG-TERM ESTROGEN TREATMENT ON IFN-Î ³ , IL-2 AND IL-4 GENE EXPRESSION AND PROTEIN SYNTHESIS IN SPLEEN AND THYMUS OF NORMAL C57BL/6 MICE. Cytokine, 2001, 14, 208-217.	3.2	112
50	Interferon-Î ³ levels are upregulated by 17-Î ² -estradiol and diethylstilbestrol. Journal of Reproductive Immunology, 2001, 52, 113-127.	1.9	136
51	Gender and Risk of Autoimmune Diseases: Possible Role of Estrogenic Compounds. Environmental Health Perspectives, 1999, 107, 681.	6.0	34
52	Comparison of multiple assays for kinetic detection of apoptosis in thymocytes exposed to dexamethasone or diethylstilbesterol. Cytometry, 1999, 35, 80-90.	1.8	56
53	Effects of Sex Hormones on Immune Responses and Autoimmune Diseases: An Update. , 1999, , 333-337.		2
54	Analysis of Avian Lymphocyte Proliferation by a New, Simple, Nonradioactive Assay (Lympho-Pro). Avian Diseases, 1997, 41, 714.	1.0	74

S Ansar Ahmed

#	Article	IF	CITATIONS
55	Characterization of Estrogen-Induced Autoantibodies to Cardiolipin in Non-Autoimmune Mice. Journal of Autoimmunity, 1997, 10, 115-125.	6.5	65
56	A dye-based lymphocyte proliferation assay that permits multiple immunological analyses: mRNA, cytogenetic, apoptosis, and immunophenotyping studies. Journal of Immunological Methods, 1997, 210, 25-39.	1.4	85
57	Differential effects of dexamethasone on the thymus and spleen: alterations in programmed cell death, lymphocyte subsets and activation of T cells. Immunopharmacology, 1994, 28, 55-66.	2.0	28
58	A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. Journal of Immunological Methods, 1994, 170, 211-224.	1.4	1,199
59	Immunologic studies of a horse with lymphosarcoma. Veterinary Immunology and Immunopathology, 1993, 38, 229-239.	1.2	15
60	CD5 B Cells in Autoimmunitya. Annals of the New York Academy of Sciences, 1992, 651, 551-556.	3.8	13
61	Sex hormones and the immune system—part 2. Animal data. Bailliere's Clinical Rheumatology, 1990, 4, 13-31.	1.0	127
62	Sex Hormones and Autoimmune Rheumatic Disorders. Scandinavian Journal of Rheumatology, 1989, 18, 69-76.	1.1	31
63	Estrogen induces normal murine CD5+ B cells to produce autoantibodies. Journal of Immunology, 1989, 142, 2647-53.	0.8	83
64	Hormonal Approaches to Immunotherapy of Autoimmune Disease. Annals of the New York Academy of Sciences, 1986, 475, 320-328.	3.8	14
65	Altered Natural Killer and Natural Cytotoxic Cellular Activities in lpr Mice. Scandinavian Journal of Immunology, 1986, 23, 415-423.	2.7	16
66	Beneficial effect of testosterone in the treatment of chronic autoimmune thyroiditis in rats. Journal of Immunology, 1986, 136, 143-7.	0.8	42
67	The survival value of nonclassic target sites for sex hormone action in the immune and central nervous systems. Clinical Immunology Newsletter, 1985, 6, 97-99.	0.1	5
68	Sex hormones, immune responses, and autoimmune diseases. Mechanisms of sex hormone action. American Journal of Pathology, 1985, 121, 531-51.	3.8	623
69	Effects of short-term administration of sex hormones on normal and autoimmune mice. Journal of Immunology, 1985, 134, 204-10.	0.8	114
70	The effects of female sex steroids on the development of autoimmune thyroiditis in thymectomized and irradiated rats. Clinical and Experimental Immunology, 1983, 54, 351-8.	2.6	28
71	Pathological changes in inbred strains of mice following early thymectomy and irradiation. Experientia, 1981, 37, 1341-1343.	1.2	23
72	EGR2 Deletion Suppresses Anti-DsDNA Autoantibody and IL-17 Production in Autoimmune-Prone B6/lpr Mice: A Differential Immune Regulatory Role of EGR2 in B6/lpr Versus Normal B6 Mice. Frontiers in Immunology, 0, 13, .	4.8	1

#	Article	IF	CITATIONS
73	Deletion of microRNA-183-96-182 Cluster in Lymphocytes Suppresses Anti-DsDNA Autoantibody Production and IgG Deposition in the Kidneys in C57BL/6-Faslpr/lpr Mice. Frontiers in Genetics, 0, 13, .	2.3	3