Paul F Alewood

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1175120/publications.pdf

Version: 2024-02-01

287 papers

16,006 citations

68 h-index 25787 108 g-index

297 all docs

297 docs citations

times ranked

297

10236 citing authors

#	Article	IF	CITATIONS
1	<i>In situ</i>) neutralization in Bocâ€chemistry solid phase peptide synthesis. International Journal of Peptide and Protein Research, 1992, 40, 180-193.	0.1	889
2	Trends in peptide drug discovery. Nature Reviews Drug Discovery, 2021, 20, 309-325.	46.4	792
3	Evolution of separate predation- and defence-evoked venoms in carnivorous cone snails. Nature Communications, 2014, 5, 3521.	12.8	275
4	Discovery, Synthesis, and Structure–Activity Relationships of Conotoxins. Chemical Reviews, 2014, 114, 5815-5847.	47.7	258
5	Selective spider toxins reveal a role for the Nav1.1 channel in mechanical pain. Nature, 2016, 534, 494-499.	27.8	239
6	Two new classes of conopeptides inhibit the $\hat{l}\pm 1$ -adrenoceptor and noradrenaline transporter. Nature Neuroscience, 2001, 4, 902-907.	14.8	233
7	Chemical Synthesis and Folding Pathways of Large Cyclic Polypeptides: Studies of the Cystine Knot Polypeptide Kalata B1â€. Biochemistry, 1999, 38, 10606-10614.	2.5	219
8	Novel ω-Conotoxins from Conus catus Discriminate among Neuronal Calcium Channel Subtypes. Journal of Biological Chemistry, 2000, 275, 35335-35344.	3.4	199
9	Deep Venomics Reveals the Mechanism for Expanded Peptide Diversity in Cone Snail Venom. Molecular and Cellular Proteomics, 2013, 12, 312-329.	3.8	180
10	Conotoxins: Chemistry and Biology. Chemical Reviews, 2019, 119, 11510-11549.	47.7	174
11	Venomics: a new paradigm for natural products-based drug discovery. Amino Acids, 2011, 40, 15-28.	2.7	172
12	α-Selenoconotoxins, a New Class of Potent α7 Neuronal Nicotinic Receptor Antagonists. Journal of Biological Chemistry, 2006, 281, 14136-14143.	3.4	171
13	Ancient Venom Systems: A Review on Cnidaria Toxins. Toxins, 2015, 7, 2251-2271.	3.4	169
14	Structure determination of the three disulfide bond isomers of α-conotoxin GI: a model for the role of disulfide bonds in structural stability 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1998, 278, 401-415.	4.2	163
15	AChBP-targeted α-conotoxin correlates distinct binding orientations with nAChR subtype selectivity. EMBO Journal, 2007, 26, 3858-3867.	7.8	159
16	Probing the S100 protein family through genomic and functional analysis. Genomics, 2004, 84, 10-22.	2.9	153
17	In Situ Neutralization in Boc-chemistry Solid Phase Peptide Synthesis. International Journal of Peptide Research and Therapeutics, 2007, 13, 31-44.	1.9	151
18	S100A12 provokes mast cell activation: A potential amplification pathway in asthma and innate immunity. Journal of Allergy and Clinical Immunology, 2007, 119, 106-114.	2.9	147

#	Article	IF	Citations
19	Selenopeptide chemistry. Journal of Peptide Science, 2008, 14, 1223-1239.	1.4	138
20	Isolation, Structure, and Activity of GID, a Novel $\hat{l}\pm4/7$ -Conotoxin with an Extended N-terminal Sequence. Journal of Biological Chemistry, 2003, 278, 3137-3144.	3.4	129
21	Ephrin-A5 induces rounding, blebbing and de-adhesion of EphA3-expressing 293T and melanoma cells by CrkII and Rho-mediated signalling. Journal of Cell Science, 2002, 115, 1059-72.	2.0	128
22	β-turn topography. Tetrahedron, 1993, 49, 3467-3478.	1.9	125
23	Conformational constraints: Nonpeptide \hat{l}^2 -turn mimics. Journal of Molecular Recognition, 1990, 3, 55-64.	2.1	124
24	Solving the α-Conotoxin Folding Problem: Efficient Selenium-Directed On-Resin Generation of More Potent and Stable Nicotinic Acetylcholine Receptor Antagonists. Journal of the American Chemical Society, 2010, 132, 3514-3522.	13.7	124
25	Selenoether oxytocin analogues have analgesic properties in a mouse model of chronic abdominal pain. Nature Communications, 2014, 5, 3165.	12.8	122
26	Pharmacological characterisation of the highly NaV1.7 selective spider venom peptide Pn3a. Scientific Reports, 2017, 7, 40883.	3.3	120
27	Oxidation Regulates the Inflammatory Properties of the Murine S100 Protein S100A8. Journal of Biological Chemistry, 1999, 274, 8561-8569.	3.4	116
28	A New Level of Conotoxin Diversity, a Non-native Disulfide Bond Connectivity in α-Conotoxin AulB Reduces Structural Definition but Increases Biological Activity. Journal of Biological Chemistry, 2002, 277, 48849-48857.	3.4	114
29	Modulating Oxytocin Activity and Plasma Stability by Disulfide Bond Engineering. Journal of Medicinal Chemistry, 2010, 53, 8585-8596.	6.4	112
30	The insecticidal potential of venom peptides. Cellular and Molecular Life Sciences, 2013, 70, 3665-3693.	5.4	110
31	Three-Dimensional Solution Structure of î¼-Conotoxin GIIIB, a Specific Blocker of Skeletal Muscle Sodium Channelsâ€,‡. Biochemistry, 1996, 35, 8824-8835.	2.5	106
32	Proteomic analysis ofl̂º-casein micro-heterogeneity. Proteomics, 2004, 4, 743-752.	2.2	106
33	Molecular Dissection of the Munc18c/Syntaxin4 Interaction: Implications for Regulation of Membrane Trafficking. Traffic, 2006, 7, 1408-1419.	2.7	106
34	î±-Conotoxin EpI, a Novel Sulfated Peptide from Conus episcopatusThat Selectively Targets Neuronal Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 1998, 273, 15667-15674.	3.4	103
35	Rapid sensitive analysis of cysteine rich peptide venom components. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 6910-6915.	7.1	103
36	Preformed Selenoesters Enable Rapid Native Chemical Ligation at Intractable Sites. Angewandte Chemie - International Edition, 2011, 50, 12042-12045.	13.8	103

#	Article	IF	Citations
37	The 1.1 ť crystal structure of the neuronal acetylcholine receptor antagonist, α-conotoxin PnIA from Conus pennaceus. Structure, 1996, 4, 417-423.	3.3	99
38	A Consensus Structure for ω-Conotoxins with Different Selectivities for Voltage-sensitive Calcium Channel Subtypes: Comparison of MVIIA, SVIB and SNX-202. Journal of Molecular Biology, 1996, 263, 297-310.	4.2	97
39	Conotoxins and their potential pharmaceutical applications. Drug Development Research, 1999, 46, 219-234.	2.9	97
40	Accelerated chemical synthesis of peptides and small proteins. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 1181-1186.	7.1	96
41	Conotoxins as Research Tools and Drug Leads. Current Protein and Peptide Science, 2005, 6, 221-240.	1.4	96
42	Cyclic MrIA:Â A Stable and Potent Cyclic Conotoxin with a Novel Topological Fold that Targets the Norepinephrine Transporter. Journal of Medicinal Chemistry, 2006, 49, 6561-6568.	6.4	96
43	Unique scorpion toxin with a putative ancestral fold provides insight into evolution of the inhibitor cystine knot motif. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10478-10483.	7.1	96
44	Analgesic Effects of GpTx-1, PF-04856264 and CNV1014802 in a Mouse Model of NaV1.7-Mediated Pain. Toxins, 2016, 8, 78.	3.4	94
45	[2] Rapid in situ neutralization protocols for Boc and Fmoc solid-phase chemistries. Methods in Enzymology, 1997, 289, 14-29.	1.0	91
46	Solution structure and proposed binding mechanism of a novel potassium channel toxin \hat{l}^2 -conotoxin PVIIA. Structure, 1997, 5, 1585-1597.	3.3	88
47	Total Synthesis of the Analgesic Conotoxin MrVIB through Selenocysteineâ€Assisted Folding. Angewandte Chemie - International Edition, 2011, 50, 6527-6529.	13.8	88
48	Synthesis of Difficult Cyclic Peptides by Inclusion of a Novel Photolabile Auxiliary in a Ring Contraction Strategy. Journal of the American Chemical Society, 1999, 121, 9790-9796.	13.7	86
49	Optimized deep-targeted proteotranscriptomic profiling reveals unexplored <i>Conus</i> toxin diversity and novel cysteine frameworks. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E3782-91.	7.1	85
50	Crystal Structure at 1.1 à Resolution of α-Conotoxin PnIB: Comparison with α-Conotoxins PnIA and Glâ€. Biochemistry, 1997, 36, 11323-11330.	2.5	84
51	Differential Evolution and Neofunctionalization of Snake Venom Metalloprotease Domains. Molecular and Cellular Proteomics, 2013, 12, 651-663.	3.8	83
52	Evolution of an Ancient Venom: Recognition of a Novel Family of Cnidarian Toxins and the Common Evolutionary Origin of Sodium and Potassium Neurotoxins in Sea Anemone. Molecular Biology and Evolution, 2015, 32, 1598-1610.	8.9	82
53	A Novel Conotoxin Inhibitor of Kv1.6 Channel and nAChR Subtypes Defines a New Superfamily of Conotoxins,. Biochemistry, 2006, 45, 8331-8340.	2.5	81
54	α-Conotoxin ImI Incorporating Stable Cystathionine Bridges Maintains Full Potency and Identical Three-Dimensional Structure. Journal of the American Chemical Society, 2011, 133, 15866-15869.	13.7	81

#	Article	IF	CITATIONS
55	Structure-activity relationships of ω-conotoxins MVIIA, MVIIC and 14 loop splice hybrids at N and P/Q-type calcium channels 1 1Edited by P. E. Wright. Journal of Molecular Biology, 1999, 289, 1405-1421.	4.2	80
56	Chemical and Functional Identification and Characterization of Novel Sulfated \hat{l}_{\pm} -Conotoxins from the Cone SnailConusanemone. Journal of Medicinal Chemistry, 2004, 47, 1234-1241.	6.4	80
57	Proteomic Analysis of Temperature-Dependent Changes in Stored UHT Milk. Journal of Agricultural and Food Chemistry, 2011, 59, 1837-1846.	5.2	80
58	Discovery and Structure of a Potent and Highly Specific Blocker of Insect Calcium Channels. Journal of Biological Chemistry, 2001, 276, 40306-40312.	3.4	79
59	Resolution and characterisation of multiple isoforms of bovine \hat{l}^2 -casein by 2-DE following a reversible cysteine-tagging enrichment strategy. Proteomics, 2006, 6, 3087-3095.	2.2	78
60	Conopressin-T from Conus tulipa Reveals an Antagonist Switch in Vasopressin-like Peptides. Journal of Biological Chemistry, 2008, 283, 7100-7108.	3.4	76
61	D-Amino acid residue in the C-type natriuretic peptide from the venom of the mammal, Ornithorhynchus anatinus, the Australian platypus. FEBS Letters, 2002, 524, 172-176.	2.8	75
62	A Backbone Linker for BOC-Based Peptide Synthesis and On-Resin Cyclization: Synthesis of Stylostatin 1â€,§. Journal of Organic Chemistry, 1999, 64, 3095-3101.	3.2	73
63	Solution Structure of $\hat{l}\frac{1}{4}$ -Conotoxin PIIIA, a Preferential Inhibitor of Persistent Tetrodotoxin-sensitive Sodium Channels. Journal of Biological Chemistry, 2002, 277, 27247-27255.	3.4	72
64	Cone snail venomics: from novel biology to novel therapeutics. Future Medicinal Chemistry, 2014, 6, 1659-1675.	2.3	72
65	Identification and Characterization of ProTx-III $[\langle i \rangle \hat{l} /\!\!/ 4 \langle i \rangle$ -TRTX-Tp1a], a New Voltage-Gated Sodium Channel Inhibitor from Venom of the Tarantula $\langle i \rangle$ Thrixopelma pruriens $\langle i \rangle$. Molecular Pharmacology, 2015, 88, 291-303.	2.3	72
66	Single Amino Acid Substitutions in α-Conotoxin PnIA Shift Selectivity for Subtypes of the Mammalian Neuronal Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 1999, 274, 36559-36564.	3.4	71
67	Determination of the Solution Structures of Conantokin-G and Conantokin-T by CD and NMR Spectroscopy. Journal of Biological Chemistry, 1997, 272, 2291-2299.	3.4	70
68	Electrospray liquid chromatography/mass spectrometry fingerprinting of Acanthophis (death adder) venoms: taxonomic and toxinological implications. Rapid Communications in Mass Spectrometry, 2002, 16, 600-608.	1.5	70
69	Analysis of O-glycosylation site occupancy in bovine?-casein glycoforms separated by two-dimensional gel electrophoresis. Proteomics, 2005, 5, 990-1002.	2.2	70
70	Identification of a Novel Class of Nicotinic Receptor Antagonists. Journal of Biological Chemistry, 2006, 281, 24745-24755.	3.4	70
71	χ-Conopeptide Pharmacophore Development: Toward a Novel Class of Norepinephrine Transporter Inhibitor (Xen2174) for Pain. Journal of Medicinal Chemistry, 2009, 52, 6991-7002.	6.4	70
72	Transcriptomic Messiness in the Venom Duct of Conus miles Contributes to Conotoxin Diversity. Molecular and Cellular Proteomics, 2013, 12, 3824-3833.	3.8	70

#	Article	IF	Citations
73	Synthesis, Structure Elucidation, in Vitro Biological Activity, Toxicity, and Caco-2 Cell Permeability of Lipophilic Analogues of α-Conotoxin MII. Journal of Medicinal Chemistry, 2003, 46, 1266-1272.	6.4	69
74	Structure of the HERG K+ Channel S5P Extracellular Linker. Journal of Biological Chemistry, 2003, 278, 42136-42148.	3.4	69
75	\hat{l} ±-Conotoxin AulB Isomers Exhibit Distinct Inhibitory Mechanisms and Differential Sensitivity to Stoichiometry of \hat{l} ±3 \hat{l} 24 Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2010, 285, 22254-22263.	3.4	69
76	Synthesis, Stability, Antiviral Activity, and Protease-Bound Structures of Substrate-Mimicking Constrained Macrocyclic Inhibitors of HIV-1 Protease. Journal of Medicinal Chemistry, 2000, 43, 3495-3504.	6.4	68
77	Mast Cell and Monocyte Recruitment by S100A12 and Its Hinge Domain. Journal of Biological Chemistry, 2008, 283, 13035-13043.	3.4	68
78	Solution structure of robustoxin, the lethal neurotoxin from the funnel-web spiderAtrax robustus. FEBS Letters, 1997, 419, 191-196.	2.8	67
79	Chemical Synthesis, 3D Structure, and ASIC Binding Site of the Toxin Mambalginâ€2. Angewandte Chemie - International Edition, 2014, 53, 1017-1020.	13.8	66
80	Novel natriuretic peptides from the venom of the inland taipan (Oxyuranus microlepidotus): isolation, chemical and biological characterisation. Biochemical and Biophysical Research Communications, 2005, 327, 1011-1015.	2.1	65
81	Characterisation of Nav types endogenously expressed in human SH-SY5Y neuroblastoma cells. Biochemical Pharmacology, 2012, 83, 1562-1571.	4.4	64
82	Lonspray mass spectrometry of ciguatoxin-1, maitotoxin-2 and -3, and related marine polyether toxins. Natural Toxins, 1994, 2, 56-63.	1.0	63
83	Isolation and Structure-Activity of $\hat{l}\frac{1}{4}$ -Conotoxin TIIIA, A Potent Inhibitor of Tetrodotoxin-Sensitive Voltage-Gated Sodium Channels. Molecular Pharmacology, 2007, 71, 676-685.	2.3	63
84	Direct Visualization of Disulfide Bonds through Diselenide Proxies Using ⁷⁷ Se NMR Spectroscopy. Angewandte Chemie - International Edition, 2009, 48, 9312-9314.	13.8	63
85	Total chemical synthesis and chemotactic activity of human S100A12 (ENâ€RAGE). FEBS Letters, 2001, 488, 85-90.	2.8	62
86	Analysis of the Human Casein Phosphoproteome by 2-D Electrophoresis and MALDI-TOF/TOF MS Reveals New Phosphoforms. Journal of Proteome Research, 2008, 7, 5017-5027.	3.7	62
87	Comparative Venomics Reveals the Complex Prey Capture Strategy of the Piscivorous Cone Snail <i>Conus catus </i> . Journal of Proteome Research, 2015, 14, 4372-4381.	3.7	62
88	Solution Structure of \hat{l}_{\pm} -Conotoxin ImI by 1H Nuclear Magnetic Resonance. Journal of Medicinal Chemistry, 1999, 42, 2364-2372.	6.4	60
89	Inhibition of the Norepinephrine Transporter by the Venom Peptide χ-MrIA. Journal of Biological Chemistry, 2003, 278, 40317-40323.	3.4	60
90	D-Amino acid residue in a defensin-like peptide from platypus venom: effect on structure and chromatographic properties. Biochemical Journal, 2005, 391, 215-220.	3.7	60

#	Article	IF	Citations
91	Peptideâ€Decorated Dendrimers and Their Bioapplications. Angewandte Chemie - International Edition, 2016, 55, 5124-5134.	13.8	60
92	Systematic interrogation of the Conus marmoreus venom duct transcriptome with ConoSorter reveals 158 novel conotoxins and 13 new gene superfamilies. BMC Genomics, 2013, 14, 708.	2.8	59
93	The solid phase synthesis of dihydro- and tetrahydroisoquinolines. Tetrahedron Letters, 1995, 36, 7709-7712.	1.4	58
94	Three-Dimensional Solution Structure of α-Conotoxin MII by NMR Spectroscopy: Effects of Solution Environment on Helicityâ€,‡. Biochemistry, 1998, 37, 15621-15630.	2.5	58
95	Structure-Activity Studies on Alpha-Conotoxins. Current Pharmaceutical Design, 2011, 17, 4226-4241.	1.9	58
96	Direct evidence for the role of Maillard reaction products in protein cross-linking in milk powder during storage. International Dairy Journal, 2013, 31, 83-91.	3.0	58
97	Bioactive Components in Fish Venoms. Toxins, 2015, 7, 1497-1531.	3.4	58
98	Solution structure of a defensin-like peptide from platypus venom. Biochemical Journal, 1999, 341, 785-794.	3.7	57
99	Analgesic ω-Conotoxins CVIE and CVIF Selectively and Voltage-Dependently Block Recombinant and Native N-Type Calcium Channels. Molecular Pharmacology, 2010, 77, 139-148.	2.3	57
100	The 1.1 à Resolution Crystal Structure of [Tyr15]Epl, a Novel α-Conotoxin fromConus episcopatus, Solved by Direct Methodsâ€. Biochemistry, 1998, 37, 11425-11433.	2.5	56
101	α-Conotoxins PnIA and [A10L]PnIA Stabilize Different States of the α7-L247T Nicotinic Acetylcholine Receptor. Journal of Biological Chemistry, 2003, 278, 26908-26914.	3.4	56
102	A Tarantula-Venom Peptide Antagonizes the TRPA1 Nociceptor Ion Channel by Binding to the S1–S4 Gating Domain. Current Biology, 2014, 24, 473-483.	3.9	56
103	Solution structure of the sodium channel antagonist conotoxin GS: a new molecular caliper for probing sodium channel geometry. Structure, 1997, 5, 571-583.	3.3	54
104	Allosteric α1-Adrenoreceptor Antagonism by the Conopeptide ϕTIA. Journal of Biological Chemistry, 2003, 278, 34451-34457.	3.4	54
105	Isolation, characterization and total regioselective synthesis of the novel $\hat{1}\frac{1}{4}$ O-conotoxin MfVIA from Conus magnificus that targets voltage-gated sodium channels. Biochemical Pharmacology, 2012, 84, 540-548.	4.4	54
106	A novel thioether linker: Chemical synthesis of a HIV-1 protease analogue by thioether ligation. Tetrahedron Letters, 1995, 36, 8871-8874.	1.4	53
107	The Snake with the Scorpion's Sting: Novel Three-Finger Toxin Sodium Channel Activators from the Venom of the Long-Glanded Blue Coral Snake (Calliophis bivirgatus). Toxins, 2016, 8, 303.	3.4	53
108	Biomolecular Interaction Analysis of IFNγ-Induced Signaling Events in Whole-Cell Lysates: Prevalence of Latent STAT1 in High-Molecular Weight Complexes. Growth Factors, 1998, 16, 39-51.	1.7	52

#	Article	IF	Citations
109	The role of defensive ecological interactions in theÂevolution of conotoxins. Molecular Ecology, 2016, 25, 598-615.	3.9	52
110	A theoretical study of the Curtius rearrangement. The electronic structures and interconversions of the CHNO species. Canadian Journal of Chemistry, 1977, 55, 1498-1510.	1.1	51
111	Cyclization of Peptides by using Selenolanthionine Bridges. Angewandte Chemie - International Edition, 2012, 51, 10298-10302.	13.8	51
112	Isolation and characterization of \hat{l} ±-conotoxin LsIA with potent activity at nicotinic acetylcholine receptors. Biochemical Pharmacology, 2013, 86, 791-799.	4.4	51
113	An ActivatedO→NAcyl Transfer Auxiliary: Efficient Amide-Backbone Substitution of Hindered "Difficult― Peptides. Journal of Organic Chemistry, 2000, 65, 5460-5468.	3.2	50
114	Chemical Engineering and Structural and Pharmacological Characterization of the \hat{l}_{\pm} -Scorpion Toxin OD1. ACS Chemical Biology, 2013, 8, 1215-1222.	3.4	50
115	Atypical α-Conotoxin LtIA from Conus litteratus Targets a Novel Microsite of the α3β2 Nicotinic Receptor. Journal of Biological Chemistry, 2010, 285, 12355-12366.	3.4	49
116	RegllA: An $\hat{i}\pm4/7$ -conotoxin from the venom of Conus regius that potently blocks $\hat{i}\pm3\hat{i}^24$ nAChRs. Biochemical Pharmacology, 2012, 83, 419-426.	4.4	49
117	Mammalianl-to-d-amino-acid-residue isomerase from platypus venom. FEBS Letters, 2006, 580, 1587-1591.	2.8	48
118	Structural engineering of the HIVâ€1 protease molecule with a <i>β</i> â€turn mimic of fixed geometry. Protein Science, 1993, 2, 1085-1091.	7.6	47
119	Effects of Chirality at Tyr13 on the StructureⰠActivity Relationships of ω-Conotoxins from Conus magus. Biochemistry, 1999, 38, 6741-6751.	2.5	47
120	Establishing regiocontrol of disulfide bond isomers of αâ€conotoxin lml via the synthesis of Nâ€to cyclic analogs. Biopolymers, 2010, 94, 307-313.	2.4	47
121	Firing the Sting: Chemically Induced Discharge of Cnidae Reveals Novel Proteins and Peptides from Box Jellyfish (Chironex fleckeri) Venom. Toxins, 2015, 7, 936-950.	3.4	47
122	Structure of \hat{l}_{\pm} -conotoxin BulA: influences of disulfide connectivity on structural dynamics. BMC Structural Biology, 2007, 7, 28.	2.3	46
123	Total Synthesis of Human Hepcidin through Regioselective Disulfideâ€Bond Formation by using the Safetyâ€Catch Cysteine Protecting Group 4,4′â€Dimethylsulfinylbenzhydryl. Angewandte Chemie - International Edition, 2014, 53, 2931-2934.	13.8	46
124	Modulatory features of the novel spider toxin μâ€₹RTXâ€Df1a isolated from the venom of the spider <i>Davus fasciatus</i> . British Journal of Pharmacology, 2017, 174, 2528-2544.	5.4	46
125	Mutagenicity of N-hydroxy-2-acetylaminofluorene and N-hydroxy-phenacetin and their respective deacetylated metabolites in nitroreductase deficient Salmonella TA98FR and TA100FR. Carcinogenesis, 1982, 3, 167-170.	2.8	45
126	Stabilization of the Cysteineâ€Rich Conotoxin MrIA by Using a 1,2,3â€Triazole as a Disulfide Bond Mimetic. Angewandte Chemie - International Edition, 2015, 54, 1361-1364.	13.8	45

#	Article	IF	Citations
127	Siteâ€Specific p <i>K</i> _a Determination of Selenocysteine Residues in Selenovasopressin by Using ⁷⁷ Se NMR Spectroscopy. Angewandte Chemie - International Edition, 2011, 50, 11952-11955.	13.8	44
128	Analgesic effects of clinically used compounds in novel mouse models of polyneuropathy induced by oxaliplatin and cisplatin. Neuro-Oncology, 2014, 16, 1324-1332.	1.2	44
129	Species and Regional Variations in the Effectiveness of Antivenom against the in Vitro Neurotoxicity of Death Adder (Acanthophis) Venoms. Toxicology and Applied Pharmacology, 2001, 175, 140-148.	2.8	43
130	Solution structure of CnErg1 (Ergtoxin), a HERG specific scorpion toxin. FEBS Letters, 2003, 539, 138-142.	2.8	43
131	Neuronally Selective μ-Conotoxins from Conus striatus Utilize an α-Helical Motif to Target Mammalian Sodium Channels. Journal of Biological Chemistry, 2008, 283, 21621-21628.	3.4	43
132	Identifying Key Amino Acid Residues That Affect \hat{l} ±-Conotoxin AulB Inhibition of \hat{l} ±3 \hat{l} 24 Nicotinic Acetylcholine Receptors. Journal of Biological Chemistry, 2013, 288, 34428-34442.	3.4	43
133	Chemical synthesis and folding of APETx2, a potent and selective inhibitor of acid sensing ion channel 3. Toxicon, 2009, 54, 56-61.	1.6	42
134	A proteomic approach to detect lactosylation and other chemical changes in stored milk protein concentrate. Food Chemistry, 2012, 132, 655-662.	8.2	42
135	Discovery of an MIT-like atracotoxin family: Spider venom peptides that share sequence homology but not pharmacological properties with AVIT family proteins. Peptides, 2005, 26, 2412-2426.	2.4	41
136	Understanding the Molecular Basis of Toxin Promiscuity: The Analgesic Sea Anemone Peptide APETx2 Interacts with Acid-Sensing Ion Channel 3 and hERG Channels via Overlapping Pharmacophores. Journal of Medicinal Chemistry, 2014, 57, 9195-9203.	6.4	40
137	The Development and Application of a Novel Safety-Catch Linker for BOC-Based Assembly of Libraries of Cyclic Peptides‖,1. Journal of Organic Chemistry, 2001, 66, 7706-7713.	3.2	39
138	Solution structure of \ddot{l} -conopeptide MrIA, a modulator of the human norepinephrine transporter. Biopolymers, 2005, 80, 815-823.	2.4	39
139	Isolation and characterisation of conomap-Vt, ad-amino acid containing excitatory peptide from the venom of a vermivorous cone snail. FEBS Letters, 2006, 580, 3860-3866.	2.8	39
140	Intraspecific variations in Conus geographus defence-evoked venom and estimation of the human lethal dose. Toxicon, 2014, 91, 135-144.	1.6	39
141	Cloning and characterisation of natriuretic peptides from the venom glands of Australian elapids. Biochimie, 2006, 88, 1923-1931.	2.6	38
142	Inhibition of Neuronal Nicotinic Acetylcholine Receptor Subtypes by α-Conotoxin GID and Analogues*. Journal of Biological Chemistry, 2009, 284, 4944-4951.	3.4	38
143	Binding Inhibitors of the Bacterial Sliding Clamp by Design. Journal of Medicinal Chemistry, 2011, 54, 4831-4838.	6.4	38
144	Isolation and Characterization of Conopeptides by High-performance Liquid Chromatography Combined with Mass Spectrometry and Tandem Mass Spectrometry. , 1996, 10, 138-143.		37

#	Article	IF	CITATIONS
145	Development of a î¼O-Conotoxin Analogue with Improved Lipid Membrane Interactions and Potency for the Analgesic Sodium Channel NaV1.8. Journal of Biological Chemistry, 2016, 291, 11829-11842.	3.4	37
146	Gomesin inhibits melanoma growth by manipulating key signaling cascades that control cell death and proliferation. Scientific Reports, 2018, 8, 11519.	3.3	37
147	Cysteine-Rich Mini-Proteins in Human Biology. Current Topics in Medicinal Chemistry, 2012, 12, 1514-1533.	2.1	36
148	Structureâ^'Activity Studies of Conantokins as Human N-Methyl-d-aspartate Receptor Modulators,. Journal of Medicinal Chemistry, 1999, 42, 415-426.	6.4	35
149	Multiple actions of φ-LITX-Lw1a on ryanodine receptors reveal a functional link between scorpion DDH and ICK toxins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8906-8911.	7.1	35
150	Privileged frameworks from snake venom. Cellular and Molecular Life Sciences, 2015, 72, 1939-1958.	5.4	35
151	Antiallodynic effects of the selective NaV1.7 inhibitor Pn3a in a mouse model of acute postsurgical pain: evidence for analgesic synergy with opioids and baclofen. Pain, 2019, 160, 1766-1780.	4.2	35
152	The oxytocin receptor signalling system and breast cancer: a critical review. Oncogene, 2020, 39, 5917-5932.	5.9	35
153	Subtle modifications to oxytocin produce ligands that retain potency and improved selectivity across species. Science Signaling, 2017, 10 , .	3.6	34
154	PHAB toxins: a unique family of predatory sea anemone toxins evolving via intra-gene concerted evolution defines a new peptide fold. Cellular and Molecular Life Sciences, 2018, 75, 4511-4524.	5.4	34
155	Role of the 6â€20 disulfide bridge in the structure and activity of epidermal growth factor. Protein Science, 1998, 7, 1738-1749.	7.6	33
156	Early pregnancy factor suppresses experimental autoimmune encephalomyelitis induced in Lewis rats with myelin basic protein and in SJL/J mice with myelin proteolipid protein peptide 139-151. Journal of the Neurological Sciences, 2000, 182, 5-15.	0.6	33
157	Development of a human vasopressin V1a-receptor antagonist from an evolutionary-related insect neuropeptide. Scientific Reports, 2017, 7, 41002.	3.3	33
158	Vicinal Disulfide Constrained Cyclic Peptidomimetics: a Turn Mimetic Scaffold Targeting the Norepinephrine Transporter. Angewandte Chemie - International Edition, 2013, 52, 12020-12023.	13.8	32
159	α-Conotoxin Dendrimers Have Enhanced Potency and Selectivity for Homomeric Nicotinic Acetylcholine Receptors. Journal of the American Chemical Society, 2015, 137, 3209-3212.	13.7	32
160	Australian funnel-web spiders evolved human-lethal \hat{l} -hexatoxins for defense against vertebrate predators. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 24920-24928.	7.1	32
161	De novo sequencing of peptides from the parotid secretion of the cane toad, Bufo marinus (Rhinella) Tj ETQq $1\ 1$	0.784314 1.6	FrgBT /Overlo
162	MrIC, a Novel $\hat{I}\pm$ -Conotoxin Agonist in the Presence of PNU at Endogenous $\hat{I}\pm7$ Nicotinic Acetylcholine Receptors. Biochemistry, 2014, 53, 1-3.	2.5	31

#	Article	IF	Citations
163	A tetrapeptide class of biased analgesics from an Australian fungus targets the µ-opioid receptor. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22353-22358.	7.1	31
164	Analysis of disulphide linkages in bovine κâ€casein oligomers using twoâ€dimensional electrophoresis. Electrophoresis, 2008, 29, 2402-2410.	2.4	30
165	Molecular Engineering of Conotoxins: The Importance of Loop Size to α-Conotoxin Structure and Function. Journal of Medicinal Chemistry, 2008, 51, 5575-5584.	6.4	30
166	Solid phase synthesis of peptide-selenoesters. Bioorganic and Medicinal Chemistry, 2013, 21, 3473-3478.	3.0	30
167	Î'-Conotoxin SuVIA suggests an evolutionary link between ancestral predator defence and the origin of fish-hunting behaviour in carnivorous cone snails. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20150817.	2.6	29
168	Structural mechanisms for \hat{l} ±-conotoxin activity at the human \hat{l} ±3 \hat{l} 24 nicotinic acetylcholine receptor. Scientific Reports, 2017, 7, 45466.	3.3	29
169	Solution structure of a defensin-like peptide from platypus venom. Biochemical Journal, 1999, 341, 785.	3.7	28
170	Oral absorption and in vivo biodistribution of \hat{l}_{\pm} -conotoxin MII and a lipidic analogue. Biochemical and Biophysical Research Communications, 2007, 361, 97-102.	2.1	28
171	A Single αâ€Helical Turn Stabilized by Replacement of an Internal Hydrogen Bond with a Covalent Ethylene Bridge. Angewandte Chemie - International Edition, 2009, 48, 5675-5678.	13.8	28
172	Conopeptide-Derived κ-Opioid Agonists (Conorphins): Potent, Selective, and Metabolic Stable Dynorphin A Mimetics with Antinociceptive Properties. Journal of Medicinal Chemistry, 2016, 59, 2381-2395.	6.4	28
173	Δâ€Myrtoxinâ€Mp1a is a Helical Heterodimer from the Venom of the Jack Jumper Ant that has Antimicrobial, Membraneâ€Disrupting, and Nociceptive Activities. Angewandte Chemie - International Edition, 2017, 56, 8495-8499.	13.8	28
174	Tyrosine-rich Conopeptides Affect Voltage-gated K+ Channels. Journal of Biological Chemistry, 2008, 283, 23026-23032.	3.4	27
175	Negative ion electrospray mass spectra of caerulein peptides: an aid to structural determination. Rapid Communications in Mass Spectrometry, 2002, 16, 281-286.	1.5	26
176	Comparison of the in vitro neuromuscular activity of venom from three australian snakes (Hoplocephalus stephensi, Austrelaps superbus and Notechis scutatus): Efficacy of tiger snake antivenom. Clinical and Experimental Pharmacology and Physiology, 2003, 30, 127-132.	1.9	26
177	Transcriptome and proteome of <i>Conus planorbis</i> identify the nicotinic receptors as primary target for the defensive venom. Proteomics, 2015, 15, 4030-4040.	2.2	26
178	Deep venomics of the Pseudonaja genus reveals inter- and intra-specific variation. Journal of Proteomics, 2016, 133, 20-32.	2.4	26
179	Solid phase synthesis of hydroxyethylamine peptide bond isosteres: Synthesis of the potent HIV-1 protease inhibitor JG365. Tetrahedron Letters, 1992, 33, 977-980.	1.4	25
180	Conformations of platypus venom C-type natriuretic peptide in aqueous solution and sodium dodecyl sulfate micelles. Toxicon, 2002, 40, 711-719.	1.6	25

#	Article	IF	Citations
181	High-voltage-activated calcium current subtypes in mouse DRG neurons adapt in a subpopulation-specific manner after nerve injury. Journal of Neurophysiology, 2015, 113, 1511-1519.	1.8	25
182	Conotoxin Φâ€MiXXVIIA from the Superfamily G2 Employs a Novel Cysteine Framework that Mimics Granulin and Displays Antiâ€Apoptotic Activity. Angewandte Chemie - International Edition, 2017, 56, 14973-14976.	13.8	25
183	Boc SPPS of two hydrophobic peptides using a "solubilising tail―strategy: dodecaalanine and chemotactic protein 1042–55. Tetrahedron Letters, 1996, 37, 8431-8434.	1.4	24
184	Synthesis and Characterization of δ-Atracotoxin-Ar1a, the Lethal Neurotoxin from Venom of the Sydney Funnel-Web Spider (Atrax robustus)â€. Biochemistry, 2003, 42, 12933-12940.	2.5	24
185	Physico-chemical characterization and synthesis of neuronally active alpha-conotoxins. FEBS Journal, 2004, 271, 2294-2304.	0.2	24
186	Electronic structure of carbonyl nitrenes. Mechanism of insertion and abstraction reactions. Journal of the American Chemical Society, 1973, 95, 5466-5475.	13.7	23
187	lon-spray tandem mass spectrometry in peptide synthesis: Structural characterization of minor by-products in the synthesis of ACP(65–74). Analytical Biochemistry, 1992, 204, 335-343.	2.4	23
188	Quantification of lactosylation of whey proteins in stored milk powder using multiple reaction monitoring. Food Chemistry, 2013, 141, 1203-1210.	8.2	23
189	Holocyclotoxin-1, a cystine knot toxin from Ixodes holocyclus. Toxicon, 2014, 90, 308-317.	1.6	23
190	Isolation and characterization at cholinergic nicotinic receptors of a neurotoxin from the venom of the Acanthophis sp. Seram death adder. Biochemical Pharmacology, 2004, 68, 383-394.	4.4	22
191	An immunomodulator used to protect young in the pouch of the Tammar wallaby, Macropus eugenii. FEBS Journal, 2005, 272, 433-443.	4.7	22
192	Chemical Synthesis and Structure of the Prokineticin Bv8. ChemBioChem, 2010, 11, 1882-1888.	2.6	22
193	Melanocortinâ€1 receptorâ€mediated signalling pathways activated by NDPâ€MSH and HBD3 ligands. Pigment Cell and Melanoma Research, 2012, 25, 370-374.	3.3	22
194	Discovery and mode of action of a novel analgesic \hat{l}^2 -toxin from the African spider Ceratogyrus darlingi. PLoS ONE, 2017, 12, e0182848.	2.5	22
195	Novel analgesic ï‰-conotoxins from the vermivorous cone snail Conus moncuri provide new insights into the evolution of conopeptides. Scientific Reports, 2018, 8, 13397.	3.3	22
196	Taxonomy of Australian Funnel-web spiders using rp-HPLC/ESI-MS profiling techniques. Toxicon, 2006, 47, 614-627.	1.6	21
197	Isolation and characterization of a structurally unique \hat{l}^2 -hairpin venom peptide from the predatory ant Anochetus emarginatus. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 2553-2562.	2.4	21
198	Challenges for protein chemical synthesis in the 21st century: Bridging genomics and proteomics. Biopolymers, 2000, 55, 217-226.	2.4	20

#	Article	IF	Citations
199	Hydrophobic residues at position 10 of \hat{l}_{\pm} -conotoxin PnIA influence subtype selectivity between \hat{l}_{\pm} 7 and \hat{l}_{\pm} 3 \hat{l}^{2} 2 neuronal nicotinic acetylcholine receptors. Biochemical Pharmacology, 2014, 91, 534-542.	4.4	20
200	Venomics Reveals Venom Complexity of the Piscivorous Cone Snail, Conus tulipa. Marine Drugs, 2019, 17, 71.	4.6	20
201	p-Cresol As a Reversible Acylium Ion Scavenger in Solid-Phase Peptide Synthesis. Journal of the American Chemical Society, 1998, 120, 1410-1420.	13.7	19
202	Cyclisation Increases the Stability of the Sea Anemone Peptide APETx2 but Decreases Its Activity at Acid-Sensing Ion Channel 3. Marine Drugs, 2012, 10, 1511-1527.	4.6	19
203	Isolation, synthesis and characterization of ï‰-TRTX-Cc1a, a novel tarantula venom peptide that selectively targets L-type CaV channels. Biochemical Pharmacology, 2014, 89, 276-286.	4.4	19
204	Transcriptomic-Proteomic Correlation in the Predation-Evoked Venom of the Cone Snail, Conus imperialis. Marine Drugs, 2019, 17, 177.	4.6	19
205	Structure of the pore-helix of the hERG K+ channel. European Biophysics Journal, 2009, 39, 111-120.	2.2	18
206	Functional characterization on invertebrate and vertebrate tissues of tachykinin peptides from octopus venoms. Peptides, 2013, 47, 71-76.	2.4	18
207	Synthesis of a Protected Phosphoamino Acid, $\hat{Nl}\pm$ -tert-Butyloxycarbonyl-O-Diethylphosphoro-L-Serine. Synthetic Communications, 1982, 12, 821-828.	2.1	17
208	<i>p</i> â€Nitrobenzyl protection for cysteine and selenocysteine: A more stable alternative to the acetamidomethyl group. Biopolymers, 2010, 94, 423-432.	2.4	17
209	Activation of \hat{I}° Opioid Receptors in Cutaneous Nerve Endings by Conorphin-1, a Novel Subtype-Selective Conopeptide, Does Not Mediate Peripheral Analgesia. ACS Chemical Neuroscience, 2015, 6, 1751-1758.	3.5	17
210	Production, composition, and mode of action of the painful defensive venom produced by a limacodid caterpillar, $\langle i \rangle$ Doratifera vulnerans $\langle i \rangle$. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
211	Leu10 of α-conotoxin PnIB confers potency for neuronal nicotinic responses in bovine chromaffin cells. European Journal of Pharmacology, 2000, 390, 229-236.	3.5	16
212	NMR studies of exchange between intra- and extracellular glutathione in human erythrocytes. Redox Report, 2005, 10, 83-90.	4.5	16
213	Do Vicinal Disulfide Bridges Mediate Functionally Important Redox Transformations in Proteins?. Antioxidants and Redox Signaling, 2013, 19, 1976-1980.	5.4	16
214	\hat{l}_{\pm} -conotoxin MrIC is a biased agonist at \hat{l}_{\pm} 7 nicotinic acetylcholine receptors. Biochemical Pharmacology, 2015, 94, 155-163.	4.4	16
215	The tarantula toxin \hat{l}^2/\hat{l}' -TRTX-Pre1a highlights the importance of the S1-S2 voltage-sensor region for sodium channel subtype selectivity. Scientific Reports, 2017, 7, 974.	3.3	16
216	Mapping the Molecular Surface of the Analgesic NaV1.7-Selective Peptide Pn3a Reveals Residues Essential for Membrane and Channel Interactions. ACS Pharmacology and Translational Science, 2020, 3, 535-546.	4.9	16

#	Article	IF	CITATIONS
217	A one-variable topographical descriptor for the \hat{l}^2 -turns of peptides and proteins. FEBS Letters, 1990, 273, 15-18.	2.8	14
218	Synthesis of cyclic peptides modelled on the microcystin and nodularin rings. Bioorganic and Medicinal Chemistry Letters, 1996, 6, 2107-2112.	2.2	14
219	Evaluation of COMU as a coupling reagent for <i>in situ</i> neutralization Boc solid phase peptide synthesis. Journal of Peptide Science, 2012, 18, 199-207.	1.4	14
220	Efficient chemical synthesis of human complement protein C3a. Chemical Communications, 2013, 49, 2356.	4.1	14
221	Isolation of two insecticidal toxins from venom of the Australian theraphosid spider Coremiocnemis tropix. Toxicon, 2016, 123, 62-70.	1.6	14
222	Investigation of the estuarine stonefish (Synanceia horrida) venom composition. Journal of Proteomics, 2019, 201, 12-26.	2.4	14
223	Marine Toxins as Sources of Drug Leads. Australian Journal of Chemistry, 2003, 56, 769.	0.9	13
224	The role of disulfide bonds in the structure and function of murine epidermal growth factor (mEGF). Growth Factors, 2005, 23, 97-110.	1.7	13
225	Conotoxin engineering: dual pharmacophoric noradrenaline transport inhibitor/integrin binding peptide with improved stability. Organic and Biomolecular Chemistry, 2012, 10, 5791.	2.8	13
226	UHT milk contains multiple forms of αS1-casein that undergo degradative changes during storage. Food Chemistry, 2012, 133, 689-696.	8.2	13
227	CHAPTER 2. The Structural Universe of Disulfide-Rich Venom Peptides. RSC Drug Discovery Series, 2015, , 37-79.	0.3	13
228	Novel venom-derived inhibitors of the human EAG channel, a putative antiepileptic drug target. Biochemical Pharmacology, 2018, 158, 60-72.	4.4	13
229	Kinetic properties of HIV-1 protease produced by total chemical synthesis with cysteine residues replaced by isosteric L-?-amino-n-butyric acid. International Journal of Peptide Research and Therapeutics, 1995, 2, 99-107.	0.1	12
230	Conotoxin TVIIA, a novel peptide from the venom of Conus tulipa. FEBS Journal, 2000, 267, 4649-4657.	0.2	12
231	N―and câ€terminal extensions of μ onotoxins increase potency and selectivity for neuronal sodium channels. Biopolymers, 2012, 98, 161-165.	2.4	12
232	Novel conorfamides from Conus austini venom modulate both nicotinic acetylcholine receptors and acid-sensing ion channels. Biochemical Pharmacology, 2019, 164, 342-348.	4.4	12
233	Fulditoxin, representing a new class of dimeric snake toxins, defines novel pharmacology at nicotinic ACh receptors. British Journal of Pharmacology, 2020, 177, 1822-1840.	5.4	12
234	It Takes Two: Dimerization Is Essential for the Broad-Spectrum Predatory and Defensive Activities of the Venom Peptide Mp1a from the Jack Jumper Ant Myrmecia pilosula. Biomedicines, 2020, 8, 185.	3.2	12

#	Article	IF	CITATIONS
235	Nature-inspired dimerization as a strategy to modulate neuropeptide pharmacology exemplified with vasopressin and oxytocin. Chemical Science, 2021, 12, 4057-4062.	7.4	12
236	Conotoxin TVIIA, a novel peptide from the venom of Conus tulipa. FEBS Journal, 2000, 267, 4642-4648.	0.2	11
237	Synthesis of an Analog of the Thyroid Hormone-binding Protein Transthyretin via Regioselective Chemical Ligation. Journal of Biological Chemistry, 2001, 276, 25997-26003.	3.4	11
238	A Cassette Ligation Strategy with Thioether Replacement of Three Gly-Gly Peptide Bonds: Total Chemical Synthesis of the 101 Residue Protein Early Pregnancy Factor [i^(CH2S)28-29,56-57,76-77]. Journal of Organic Chemistry, 2002, 67, 5883-5890.	3.2	11
239	A simple and effective procedure for the synthesis of the †difficult†phosphotyrosine-containing peptide stat 91 (695†708). Tetrahedron Letters, 1996, 37, 4765-4766.	1.4	10
240	Mass landscapes of seven scorpion species: The first analyses of Australian species with 1,5-DAN matrix. Journal of Venom Research, 2012, 3, 7-14.	0.6	10
241	Analytical methods for differentiating minor sequence variations in related peptides. Journal of Chromatography A, 1993, 646, 175-184.	3.7	9
242	Chemical synthesis and structure elucidation of bovine κ-casein (1–44). Biochemical and Biophysical Research Communications, 2006, 340, 1098-1103.	2.1	9
243	Novel ω-Conotoxins from <i>C. Catus</i> Reverse Signs of Mouse Inflammatory Pain after Systemic Administration. Molecular Pain, 2013, 9, 1744-8069-9-51.	2.1	9
244	Vicinal Disulfide Constrained Cyclic Peptidomimetics: a Turn Mimetic Scaffold Targeting the Norepinephrine Transporter. Angewandte Chemie, 2013, 125, 12242-12245.	2.0	9
245	Synthesis of Multivalent [Lys8]-Oxytocin Dendrimers that Inhibit Visceral Nociceptive Responses. Australian Journal of Chemistry, 2017, 70, 162.	0.9	9
246	Globular and ribbon isomers of Conus geographus $\hat{l}\pm$ -conotoxins antagonize human nicotinic acetylcholine receptors. Biochemical Pharmacology, 2021, 190, 114638.	4.4	9
247	Synthesis and InÂvitro Biological Activity of Cyclic Lipophilic χ-Conotoxin MrIA Analogues. International Journal of Peptide Research and Therapeutics, 2007, 13, 307-312.	1.9	8
248	Synthesis of Tripeptide Mimetics Based on Dihydroquinolinone and Benzoxazinone Scaffolds. Chemistry - A European Journal, 2011, 17, 13983-13986.	3.3	8
249	Inhibition of the norepinephrine transporter by χâ€conotoxin dendrimers. Journal of Peptide Science, 2016, 22, 280-289.	1.4	8
250	Syntheses and conformational analyses of some 3â€aminoâ€2,5â€dioxoâ€2,3,4,5â€tetrahydroâ€1 <i>H</i> àê1â derivatives: Xâ€ray crystal structure of 35–3â€[[(1,1â€dimethylethoxy)carbonyl]amino]â€2,5â€dioxoâ€2,3,4,5â€tetrahydroâ€1 <i>H</i> àê1â€benza Heterocyclic Chemistry, 1990, 27, 279-286.		
251	The synthesis and structure of an n-terminal dodecanoic acid conjugate of \hat{l}_{\pm} -conotoxin MII. International Journal of Peptide Research and Therapeutics, 2001, 8, 235-239.	0.1	7
252	Effects of Lys2 to Ala2 substitutions on the structure and potency of ï‰â€€onotoxins MVIIA and CVID. Biopolymers, 2012, 98, 345-356.	2.4	7

#	Article	IF	CITATIONS
253	Editorial overview: Synthetic Biomolecules. Current Opinion in Chemical Biology, 2014, 22, viii-xi.	6.1	7
254	A Defined αâ€Helix in the Bifunctional <i>O</i> â€Glycosylated Natriuretic Peptide TcNPa from the Venom of <i>Tropidechis carinatus</i> . Angewandte Chemie - International Edition, 2015, 54, 4828-4831.	13.8	7
255	CHAPTER 3. Venoms-Based Drug Discovery: Proteomic and Transcriptomic Approaches. RSC Drug Discovery Series, 2015, , 80-96.	0.3	7
256	Evaluation of Chemical Strategies for Improving the Stability and Oral Toxicity of Insecticidal Peptides. Biomedicines, 2018, 6, 90.	3.2	7
257	Mutational analysis of ProTx-I and the novel venom peptide Pe1b provide insight into residues responsible for selective inhibition of the analgesic drug target NaV1.7. Biochemical Pharmacology, 2020, 181, 114080.	4.4	7
258	Venom duct origins of prey capture and defensive conotoxins in piscivorous Conus striatus. Scientific Reports, 2021, 11, 13282.	3.3	7
259	Multitarget nociceptor sensitization by a promiscuous peptide from the venom of the King Baboon spider. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	7
260	Rapid Access to ω-Conotoxin Chimeras using Native Chemical Ligation. Australian Journal of Chemistry, 2009, 62, 1333.	0.9	6
261	Highâ€Throughput Synthesis of Peptide αâ€Thioesters: A Safety Catch Linker Approach Enabling Parallel Hydrogen Fluoride Cleavage. ChemMedChem, 2014, 9, 1038-1046.	3.2	6
262	Effects of arginine 10 to lysine substitution on ï‰â€conotoxin <scp>CVIE</scp> and <scp>CVIF</scp> block of <scp>Ca_v</scp> 2.2 channels. British Journal of Pharmacology, 2014, 171, 3313-3327.	5.4	6
263	â€~Messy' Processing of χ-conotoxin MrIA Generates Homologues with Reduced hNET Potency. Marine Drugs, 2019, 17, 165.	4.6	6
264	Addition of K22 Converts Spider Venom Peptide Pme2a from an Activator to an Inhibitor of NaV1.7. Biomedicines, 2020, 8, 37.	3.2	6
265	Selenocystine Peptides – Synthesis, Folding and Applications. RSC Biomolecular Sciences, 2008, , 396-418.	0.4	6
266	Venomic Interrogation Reveals the Complexity of Conus striolatus Venom. Australian Journal of Chemistry, 2020, 73, 357.	0.9	5
267	Characterisation of TNF-α-related peptides by high-performance liquid chromatographyâ€"mass spectrometry and high-performance liquid chromatographyâ€"tandem mass spectrometry. Journal of Chromatography A, 1993, 646, 185-191.	3.7	4
268	Benzhydrylamine linker grafting: a strategy for the improved synthesis of <i>C</i> â€terminal peptide amides. Journal of Peptide Science, 2010, 16, 551-557.	1.4	4
269	The α1-adrenoceptor inhibitor ϕTIA facilitates net hunting in piscivorous Conus tulipa. Scientific Reports, 2019, 9, 17841.	3.3	4
270	Reâ€engineering the μâ€conotoxin SIIIA scaffold. Biopolymers, 2014, 101, 347-354.	2.4	3

#	Article	IF	Citations
271	Conotoxin Φâ€MiXXVIIA from the Superfamily G2 Employs a Novel Cysteine Framework that Mimics Granulin and Displays Antiâ€Apoptotic Activity. Angewandte Chemie, 2017, 129, 15169-15172.	2.0	3
272	Chemical Synthesis and NMR Solution Structure of Conotoxin GXIA from Conus geographus. Marine Drugs, 2021, 19, 60.	4.6	3
273	N-acetyl-N-oxo-1,4-benzoquinone imine, observation of an acyl nitrone. Tetrahedron Letters, 1985, 26, 2467-2470.	1.4	2
274	In situ neutralization in Boc chemistry SPPS: High yield assembly of difficult sequences. , 1992, , 623-624.		2
275	On-Resin Strategy to Label α-Conotoxins: Cy5-RgIA, a Potent α9α10 Nicotinic Acetylcholine Receptor Imaging Probe. Australian Journal of Chemistry, 2020, 73, 327.	0.9	2
276	The Tarantula Toxin ω-Avsp1a Specifically Inhibits Human CaV3.1 and CaV3.3 via the Extracellular S3-S4 Loop of the Domain 1 Voltage-Sensor. Biomedicines, 2022, 10, 1066.	3.2	2
277	Central nervous system receptor binding profiles of some 2-amino-4-phenyl quinolines: A novel class of α2-adrenoceptor selective ligands. Life Sciences, 1993, 53, PL343-PL347.	4.3	1
278	^{31/sup>P NMR SPECTROSCOPY STUDIES ON THE DIORGANYLPHOSPHOROCHLORIDATE/PYRIDINE PHOSPHORYLATION PROCEDURE. Phosphorus, Sulfur and Silicon and the Related Elements, 1995, 105, 1-10.}	1.6	1
279	Synthesis of \hat{l}_{\pm} -aspartyl-containing cyclic peptides. International Journal of Peptide Research and Therapeutics, 1997, 4, 79-84.	0.1	1
280	Structure/function studies of S100A8/A9. International Journal of Peptide Research and Therapeutics, 1999, 6, 359-369.	0.1	1
281	The synthesis and structure of an n-terminal dodecanoic acid conjugate of î±-conotoxin MII. International Journal of Peptide Research and Therapeutics, 2001, 8, 235-239.	0.1	1
282	Cysteine-Rich α-Conotoxin SII Displays Novel Interactions at the Muscle Nicotinic Acetylcholine Receptor. ACS Chemical Neuroscience, 2022, 13, 1245-1250.	3.5	1
283	Backbone Cyclization Improves the Enzymatic Stability of χ-Conotoxin, MrIA, whilst Maintaining its Structure and NET-Modulating Activity., 2006,, 641-642.		0
284	Modern Venom Profiling: Mining into Scorpion Venom Biodiversity., 2015,, 547-561.		0
285	Australasian Peptide Chemistry. Australian Journal of Chemistry, 2017, 70, 125.	0.9	0
286	Total Chemical Synthesis of κ-Casein Using Native Ligation Methodology. , 2001, , 115-116.		0
287	Synthesis of N to C Terminal Cyclic Analogues of $\hat{l}\pm$ -Conotoxin Iml by Chemoselective Ligation of Unprotected Linear Precursors. , 2001, , 113-114.		O