Liang Cao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1174676/publications.pdf

Version: 2024-02-01

218677 223800 2,219 68 26 46 citations h-index g-index papers 70 70 70 4370 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Kohler's rule and anisotropic Berry-phase effect in nodal-line semimetal ZrSiSe. Journal of Applied Physics, 2022, 131, .	2.5	5
2	Critical behavior and strongly anisotropic interactions in PrMn ₂ Ge ₂ . Applied Physics Letters, 2022, 120, 092402.	3.3	9
3	Signatures of Fermi surface topology change in the nodal-line semimetal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>ZrSiSe</mml:mi><mm .<="" 103,="" 2021,="" b,="" physical="" review="" td=""><td>าไสนอพ> <</td><td>maml:mn>1<</td></mm></mml:msub></mml:mrow></mml:math>	าไ สน อพ> <	maml:mn>1<
4	CHARACTERIZATION OF ELECTRONIC STRUCTURES AT ORGANIC–2D MATERIALS INTERFACES WITH ADVANCED SYNCHROTRON-BASED SOFT X-RAY SPECTROSCOPY. Surface Review and Letters, 2021, 28, 2140009.	1.1	1
5	Weak Kondo effect in the monocrystalline transition metal dichalcogenide <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Zr</mml:mi><mml:msub><mml:mi .<="" 103,="" 2021,="" b,="" physical="" review="" td=""><td>>3ex/mml</td><td>:m18> < mml:m</td></mml:mi></mml:msub></mml:mrow></mml:math>	>3ex/mml	:m18> < mml:m
6	Decisive Role of Elevated Mobility in X55 and X60 Hole Transport Layers for High-Performance Perovskite Solar Cells. ACS Applied Energy Materials, 2021, 4, 7681-7690.	5.1	2
7	Energy-Level Alignment and Orbital-Selective Femtosecond Charge Transfer Dynamics of Redox-Active Molecules on Au, Ag, and Pt Metal Surfaces. Journal of Physical Chemistry C, 2021, 125, 18474-18482.	3.1	2
8	Characterization of Electronic Structures at Organic–2D Materials Interfaces with Advanced Synchrotron-based Soft X-ray Spectroscopy. , 2021, , 241-275.		0
9	Binary Pd/amorphous-SrRuO3 hybrid film for high stability and fast activity recovery ethanol oxidation electrocatalysis. Nano Energy, 2020, 67, 104247.	16.0	55
10	Enhanced Spin Transport of Conjugated Polymer in the Semiconductor/Insulating Polymer Blend. ACS Applied Materials & Samp; Interfaces, 2020, 12, 2708-2716.	8.0	10
11	Defects controlled doping and electrical transport in TiS2 single crystals. Applied Physics Letters, 2020, 116, .	3.3	5
12	Disorder-driven non-Fermi liquid behavior in itinerant ferromagnet α-Co5Ge3. Journal of Physics Condensed Matter, 2020, 32, 155802.	1.8	1
13	Magnetic anisotropy and topological Hall effect in the trigonal chromium tellurides <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cr</mml:mi><mml:mrow><mml:msub><mml:mi>Cr</mml:mi><mml:mrow><mml:mrow><mml:msub><mml:mi>Cr</mml:mi><mml:mrow><mml:msub><mml:mi>Cr</mml:mi><mml:mrow><mml:msub><mml:mi>Cr</mml:mi><mml:mrow><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub><mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:mrow></mml:msub></mml:mrow></mml:msub></mml:mrow></mml:math>	n 252 /mml	:n48>
14	Unexpected Outstanding Room Temperature Spin Transport Verified in Organic–Inorganic Hybrid Perovskite Film. Journal of Physical Chemistry Letters, 2019, 10, 4422-4428.	4.6	20
15	Unraveling the Failure Modes of Molecular Diodes: The Importance of the Monolayer Formation Protocol and Anchoring Group to Minimize Leakage Currents. Journal of Physical Chemistry C, 2019, 123, 19759-19767.	3.1	11
16	Quantitative study of spin relaxation in rubrene thin films by inverse spin Hall effect. Applied Physics Letters, 2019, 115, 053301.	3.3	10
17	Semimetal or Semiconductor: The Nature of High Intrinsic Electrical Conductivity in TiS ₂ . Journal of Physical Chemistry Letters, 2019, 10, 6996-7001.	4.6	27
18	Unraveling Highâ€Yield Phaseâ€Transition Dynamics in Transition Metal Dichalcogenides on Metallic Substrates. Advanced Science, 2019, 6, 1802093.	11.2	23

#	Article	IF	CITATIONS
19	The supramolecular structure and van der Waals interactions affect the electronic structure of ferrocenyl-alkanethiolate SAMs on gold and silver electrodes. Nanoscale Advances, 2019, 1, 1991-2002.	4.6	10
20	2D Transition Metal Dichalcogenide: Unraveling Highâ€Yield Phaseâ€Transition Dynamics in Transition Metal Dichalcogenides on Metallic Substrates (Adv. Sci. 7/2019). Advanced Science, 2019, 6, 1970042.	11.2	0
21	Magnetic correlations and transport properties in triangular-lattice nickel germanide Ni1.8Ge single crystal. Journal of Magnetism and Magnetic Materials, 2018, 460, 104-110.	2.3	3
22	Magnetic and Transport Properties of $Co1+\hat{l}'Sb$ Single Crystals. Journal of Superconductivity and Novel Magnetism, 2018, 31, 1841-1846.	1.8	4
23	Enormously improved CH3NH3PbI3 film surface for environmentally stable planar perovskite solar cells with PCE exceeding 19.9%. Nano Energy, 2018, 48, 10-19.	16.0	61
24	Modulation of exciton transition in crystalline nanostructures of an organic semiconductor. Journal of Materials Science, 2018, 53, 1326-1334.	3.7	1
25	Surface-Limited Superconducting Phase Transition on 1 <i>T</i> -TaS ₂ . ACS Nano, 2018, 12, 12619-12628.	14.6	54
26	Chemical interaction dictated energy level alignment at the N,N′-dipentyl-3,4,9,10-perylenedicarboximide/CH3NH3Pbl3 interface. Applied Physics Letters, 2018, 113, .	3.3	11
27	The electrical transport and magnetic properties of Fe1.08Sb single crystal. Journal of Magnetism and Magnetic Materials, 2018, 465, 387-391.	2.3	2
28	Origin of Magnetism in Hydrothermally Aged 2-Line Ferrihydrite Suspensions. Environmental Science & En	10.0	16
29	Interfacial electronic structures revealed at the rubrene/CH ₃ NH ₃ Pbl ₃ interface. Physical Chemistry Chemical Physics, 2017, 19, 6546-6553.	2.8	50
30	Enhanced Crystalline Phase Purity of CH _{3a€"<i>>x</i>} Cl <i>>sub>x</i> Film for High-Efficiency Hysteresis-Free Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23141-23151.	8.0	41
31	Tunable inverted gap in monolayer quasi-metallic MoS2 induced by strong charge-lattice coupling. Nature Communications, 2017, 8, 486.	12.8	75
32	Anisotropic anomalous Hall effect in triangular itinerant ferromagnet <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Fe</mml:mi><mml:n .<="" 2017,="" 96,="" b,="" physical="" review="" td=""><td>ın &32∡/mm</td><td>l:mms </td></mml:n></mml:msub></mml:mrow></mml:math>	ın &32∡/mm	l:mms
33	Enhanced surface transfer doping of diamond by V2O5 with improved thermal stability. Applied Physics Letters, 2016, 108, .	3.3	74
34	Chemical control over the energy-level alignment in a two-terminal junction. Nature Communications, 2016, 7, 12066.	12.8	50
35	Photophysical and electrical properties of organic waveguide nanorods of perylene-3,4,9,10-tetracarboxylic dianhydride. Nano Research, 2016, 9, 1948-1955.	10.4	8
36	Orbital dependent ultrafast charge transfer dynamics of ferrocenyl-functionalized SAMs on gold studied by core-hole clock spectroscopy. Journal of Physics Condensed Matter, 2016, 28, 094006.	1.8	9

#	Article	IF	Citations
37	Controlling the direction of rectification in a molecular diode. Nature Communications, 2015, 6, 6324.	12.8	197
38	One Carbon Matters: The Origin and Reversal of Odd–Even Effects in Molecular Diodes with Self-Assembled Monolayers of Ferrocenyl-Alkanethiolates. Journal of Physical Chemistry C, 2015, 119, 17910-17919.	3.1	66
39	Electronic structures of bare and terephthalic acid adsorbed TiO ₂ (110)-(1 \tilde{A} — 2) reconstructed surfaces: origin and reactivity of the band gap states. Physical Chemistry Chemical Physics, 2015, 17, 20144-20153.	2.8	13
40	Preparation, optical and electrical properties of PTCDA nanostructures. Nanoscale, 2015, 7, 17116-17121.	5.6	23
41	Nonideal Electrochemical Behavior of Ferrocenyl–Alkanethiolate SAMs Maps the Microenvironment of the Redox Unit. Journal of Physical Chemistry C, 2015, 119, 21978-21991.	3.1	58
42	Quantitative Femtosecond Charge Transfer Dynamics at Organic/Electrode Interfaces Studied by Coreâ∈Hole Clock Spectroscopy. Advanced Materials, 2014, 26, 7880-7888.	21.0	31
43	Supramolecular Structure of Self-Assembled Monolayers of Ferrocenyl Terminated <i>n</i> -Alkanethiolates on Gold Surfaces. Langmuir, 2014, 30, 13447-13455.	3.5	30
44	Bias induced transition from an ohmic to a non-ohmic interface in supramolecular tunneling junctions with Ga ₂ O ₃ /EGaIn top electrodes. Nanoscale, 2014, 6, 11246-11258.	5.6	41
45	Molecular Orientation and Site Dependent Charge Transfer Dynamics at PTCDA/TiO ₂ (110) Interface Revealed by Resonant Photoemission Spectroscopy. Journal of Physical Chemistry C, 2014, 118, 4160-4166.	3.1	28
46	Controlling Leakage Currents: The Role of the Binding Group and Purity of the Precursors for Self-Assembled Monolayers in the Performance of Molecular Diodes. Journal of the American Chemical Society, 2014, 136, 1982-1991.	13.7	83
47	Detection of Fe 3d electronic states in the valence band and magnetic properties of Fe-doped ZnO film. Chinese Physics B, 2013, 22, 026101.	1.4	4
48	Surface transfer doping of diamond by MoO ₃ : A combined spectroscopic and Hall measurement study. Applied Physics Letters, 2013, 103, 202112.	3.3	99
49	A Photoelectron Spectroscopy Study on the Interfacial Chemistry and Electronic Structure of Terephthalic Acid Adsorption on TiO $<$ sub $>$ 2 $<$ /sub $>$ (110)-(1Ã $-$ 1) Surface. Journal of Physical Chemistry C, 2013, 117, 21351-21358.	3.1	15
50	Assistance of partially reduced MoO3 interlayer to hole-injection at iron phthalocyanine/ITO interface evidenced by photoemission study. Applied Surface Science, 2013, 271, 352-356.	6.1	12
51	Modification of PTCDA/Co Interfacial Electronic Structures Using Alq ₃ Buffer Layer. Journal of Physical Chemistry C, 2013, 117, 25636-25642.	3.1	9
52	Work function and electron affinity of the fluorine-terminated (100) diamond surface. Applied Physics Letters, 2013, 102, .	3.3	64
53	Correlation between electronic structure and magnetic properties of Fe-doped ZnO films. Journal of Applied Physics, 2012, 111, .	2.5	18
54	Molecular orientation of terephthalic acid assembly on epitaxial graphene: NEXAFS and XPS study. Physical Chemistry Chemical Physics, 2012, 14, 10125.	2.8	63

#	Article	IF	Citations
55	Magnetism in MoS2 induced by proton irradiation. Applied Physics Letters, 2012, 101, .	3.3	205
56	Tuning the interfacial hole injection barrier between p-type organic materials and Co using a MoO3 buffer layer. Journal of Applied Physics, 2012, 112, 033704.	2.5	13
57	Interface and Surface Cation Stoichiometry Modified by Oxygen Vacancies in Epitaxial Manganite Films. Advanced Functional Materials, 2012, 22, 4312-4321.	14.9	65
58	Structure and Optical Properties of ZnO Nanowire Arrays Grown by Plasma-assisted Molecular Beam Epitaxy. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2012, 27, 301-304.	1.3	7
59	Investigations on the Thermal Weight Loss and the Photoluminescence Mechanism of AAO Template. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2012, 27, 305-310.	1.3	2
60	The interfacial electronic structures at FePc/TiO2(110) and FePc/C60 interface. Wuli Xuebao/Acta Physica Sinica, 2012, 61, 186801.	0.5	1
61	Effect of Gap States on the Orientation-Dependent Energy Level Alignment at the DIP/F ₁₆ CuPc Donor–Acceptor Heterojunction Interfaces. Journal of Physical Chemistry C, 2011, 115, 23922-23928.	3.1	40
62	Electronic Structure, Chemical Interactions and Molecular Orientations of 3,4,9,10-Perylene-tetracarboxylic-dianhydride on $TiO < Sub > 2 < Sub > (110)$. Journal of Physical Chemistry C, 2011, 115, 24880-24887.	3.1	50
63	Quasi-Free-Standing Epitaxial Graphene on SiC (0001) by Fluorine Intercalation from a Molecular Source. ACS Nano, 2011, 5, 7662-7668.	14.6	96
64	Quantitative investigation in the influence of oxalic impurities on photoluminescence properties of porous AAOs. Materials Chemistry and Physics, 2011, 129, 1247-1251.	4.0	10
65	Charge transfer dynamics of 3,4,9,10-perylene-tetracarboxylic-dianhydride molecules on Au(111) probed by resonant photoemission spectroscopy. Journal of Chemical Physics, 2011, 135, 174701.	3.0	25
66	Angular dependent NEXAFS study of the molecular orientation of PTCDA multilayers on Au (111) surface. Science Bulletin, 2011, 56, 3575-3577.	1.7	6
67	Cross-correlation between WMAP and 2MASS: non-Gaussianity induced by the SZ effect. Monthly Notices of the Royal Astronomical Society, 2006, 369, 645-654.	4.4	9
68	CONSTRAIN INTERGALACTIC MEDIUM FROM THE SZ EFFECT MAP. Modern Physics Letters A, 2006, 21, 2233-2239.	1.2	2