A Sally Davis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11746168/publications.pdf

Version: 2024-02-01

516710 580821 26 682 16 25 citations g-index h-index papers 26 26 26 1268 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Use of Quantitative Digital Pathology to Measure Proteoglycan and Glycosaminoglycan Expression and Accumulation in Healthy and Diseased Tissues. Journal of Histochemistry and Cytochemistry, 2021, 69, 137-155.	2.5	5
2	Insights into the Pathogenesis of Viral Haemorrhagic Fever Based on Virus Tropism and Tissue Lesions of Natural Rift Valley Fever. Viruses, 2021, 13, 709.	3.3	20
3	Vaccination with Rift Valley fever virus live attenuated vaccine strain Smithburn caused meningoencephalitis in alpacas. Journal of Veterinary Diagnostic Investigation, 2021, 33, 777-781.	1.1	7
4	Lesions and Cellular Tropism of Natural Rift Valley Fever Virus Infection in Young Lambs. Veterinary Pathology, 2020, 57, 66-81.	1.7	24
5	Ovine Fetal and Placental Lesions and Cellular Tropism in Natural Rift Valley Fever Virus Infections. Veterinary Pathology, 2020, 57, 791-806.	1.7	14
6	MUC1 mediates <scp><i>Pneumocystis murina</i></scp> binding to airway epithelial cells. Cellular Microbiology, 2020, 22, e13182.	2.1	7
7	Rift Valley Fever Virus: Propagation, Quantification, and Storage. Current Protocols in Microbiology, 2019, 55, e92.	6. 5	17
8	Rift Valley Fever Viral RNA Detection by <i>In Situ</i> Hybridization in Formalin-Fixed, Paraffin-Embedded Tissues. Vector-Borne and Zoonotic Diseases, 2019, 19, 553-556.	1.5	10
9	Lesions and Cellular Tropism of Natural Rift Valley Fever Virus Infection in Adult Sheep. Veterinary Pathology, 2019, 56, 61-77.	1.7	32
10	Immunogenicity and efficacy of Schmallenberg virus envelope glycoprotein subunit vaccines. Journal of Veterinary Science, 2019, 20, e58.	1.3	5
11	Virological and Serological Responses of Sheep and Cattle to Experimental Schmallenberg Virus Infection. Vector-Borne and Zoonotic Diseases, 2018, 18, 697-703.	1.5	4
12	Preliminary evaluation of diagnostic accuracy and precision of a competitive ELISA for detection of antibodies to Rift Valley fever virus in cattle and sheep sera. Journal of Virological Methods, 2018, 262, 6-11.	2.1	5
13	Experimental Infection of Calves by Two Genetically-Distinct Strains of Rift Valley Fever Virus. Viruses, 2016, 8, 145.	3.3	33
14	A Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Confers Full Protection against Rift Valley Fever Challenge in Sheep. Scientific Reports, 2016, 6, 27719.	3.3	50
15	1918 Influenza receptor binding domain variants bind and replicate in primary human airway cells regardless of receptor specificity. Virology, 2016, 493, 238-246.	2.4	10
16	Development of a sheep challenge model for Rift Valley fever. Virology, 2016, 489, 128-140.	2.4	38
17	Î ² -Glucans Are Masked but Contribute to Pulmonary Inflammation During <i>Pneumocystis</i> Pneumonia. Journal of Infectious Diseases, 2016, 214, 782-791.	4.0	35
18	Validation of Normal Human Bronchial Epithelial Cells as a Model for Influenza A Infections in Human Distal Trachea. Journal of Histochemistry and Cytochemistry, 2015, 63, 312-328.	2,5	45

#	Article	IF	CITATION
19	Contemporary Avian Influenza A Virus Subtype H1, H6, H7, H10, and H15 Hemagglutinin Genes Encode a Mammalian Virulence Factor Similar to the 1918 Pandemic Virus H1 Hemagglutinin. MBio, 2014, 5, e02116.	4.1	27
20	Treatment with the reactive oxygen species scavenger EUK-207 reduces lung damage and increases survival during 1918 influenza virus infection in mice. Free Radical Biology and Medicine, 2014, 67, 235-247.	2.9	38
21	Characterizing and Diminishing Autofluorescence in Formalin-fixed Paraffin-embedded Human Respiratory Tissue. Journal of Histochemistry and Cytochemistry, 2014, 62, 405-423.	2.5	93
22	Changes in microRNA and mRNA Expression with Differentiation of Human Bronchial Epithelial Cells. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 384-395.	2.9	51
23	Analysis by Single-Gene Reassortment Demonstrates that the 1918 Influenza Virus Is Functionally Compatible with a Low-Pathogenicity Avian Influenza Virus in Mice. Journal of Virology, 2012, 86, 9211-9220.	3.4	26
24	In vivo evaluation of pathogenicity and transmissibility of influenza A(H1N1)pdm09 hemagglutinin receptor binding domain 222 intrahost variants isolated from a single immunocompromised patient. Virology, 2012, 428, 21-29.	2.4	19
25	Reply to Abed et al. Journal of Infectious Diseases, 2011, 204, 1642-1643.	4.0	2
26	MultiDrug-Resistant 2009 Pandemic Influenza A(H1N1) Viruses Maintain Fitness and Transmissibility in Ferrets. Journal of Infectious Diseases, 2011, 203, 348-357.	4.0	65