Eric Farrell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11744090/publications.pdf

Version: 2024-02-01

44 papers 2,296 citations

304743

22

h-index

315739 38 g-index

44 all docs 44 docs citations

times ranked

44

3614 citing authors

#	Article	IF	CITATIONS
1	Site-Directed Immobilization of an Engineered Bone Morphogenetic Protein 2 (BMP2) Variant to Collagen-Based Microspheres Induces Bone Formation In Vivo. International Journal of Molecular Sciences, 2022, 23, 3928.	4.1	3
2	Bio-inspired polymeric iron-doped hydroxyapatite microspheres as a tunable carrier of rhBMP-2. Materials Science and Engineering C, 2021, 119, 111410.	7.3	12
3	COMP and TSP-4: Functional Roles in Articular Cartilage and Relevance in Osteoarthritis. International Journal of Molecular Sciences, 2021, 22, 2242.	4.1	25
4	Endothelium-derived stromal cells contribute to hematopoietic bone marrow niche formation. Cell Stem Cell, 2021, 28, 653-670.e11.	11.1	31
5	The Releasate of Avascular Cartilage Demonstrates Inherent Pro-Angiogenic Properties <i>In Vitro</i> and <i>In Vivo</i> . Cartilage, 2021, 13, 559S-570S.	2.7	4
6	Chondrogenically Primed Human Mesenchymal Stem Cells Persist and Undergo Early Stages of Endochondral Ossification in an Immunocompetent Xenogeneic Model. Frontiers in Immunology, 2021, 12, 715267.	4.8	1
7	Allogeneic Chondrogenic Mesenchymal Stromal Cells Alter Helper T Cell Subsets in CD4+ Memory T Cells. Tissue Engineering - Part A, 2020, 26, 490-502.	3.1	8
8	Cartilage Oligomeric Matrix Protein–Derived Peptides Secreted by Cartilage Do Not Induce Responses Commonly Observed during Osteoarthritis. Cartilage, 2020, , 194760352096117.	2.7	4
9	Angiogenic Potential of Tissue Engineered Cartilage From Human Mesenchymal Stem Cells Is Modulated by Indian Hedgehog and Serpin E1. Frontiers in Bioengineering and Biotechnology, 2020, 8, 327.	4.1	12
10	Pediatric Mesenchymal Stem Cells Exhibit Immunomodulatory Properties Toward Allogeneic T and B Cells Under Inflammatory Conditions. Frontiers in Bioengineering and Biotechnology, 2019, 7, 142.	4.1	19
11	Follistatin Effects in Migration, Vascularization, and Osteogenesis in vitro and Bone Repair in vivo. Frontiers in Bioengineering and Biotechnology, 2019, 7, 38.	4.1	16
12	Calcifications in atherosclerotic plaques and impact on plaque biomechanics. Journal of Biomechanics, 2019, 87, 1-12.	2.1	61
13	Editorial: Understanding and Modulating Bone and Cartilage Cell Fate for Regenerative Medicine. Frontiers in Bioengineering and Biotechnology, 2019, 7, 8.	4.1	1
14	Isolating Pediatric Mesenchymal Stem Cells with Enhanced Expansion and Differentiation Capabilities. Tissue Engineering - Part C: Methods, 2018, 24, 313-321.	2.1	26
15	NELL-1, HMGB1, and CCN2 Enhance Migration and Vasculogenesis, But Not Osteogenic Differentiation Compared to BMP2. Tissue Engineering - Part A, 2018, 24, 207-218.	3.1	26
16	The Immune Response to Allogeneic Differentiated Mesenchymal Stem Cells in the Context of Bone Tissue Engineering. Tissue Engineering - Part B: Reviews, 2018, 24, 75-83.	4.8	24
17	Novel In Situ Gelling Hydrogels Loaded with Recombinant Collagen Peptide Microspheres as a Slowâ€Release System Induce Ectopic Bone Formation. Advanced Healthcare Materials, 2018, 7, e1800507.	7.6	15
18	Endochondral Ossification. , 2018, , 125-148.		8

#	Article	IF	Citations
19	Epidermal growth factor receptor (EGFR) density may not be the only determinant for the efficacy of EGFRâ€targeted photoimmunotherapy in human head and neck cancer cell lines. Lasers in Surgery and Medicine, 2018, 50, 513-522.	2.1	19
20	Activin and Nodal Are Not Suitable Alternatives to $TGF\hat{l}^2$ for Chondrogenic Differentiation of Mesenchymal Stem Cells. Cartilage, 2017, 8, 432-438.	2.7	5
21	Selective laser melting porous metallic implants with immobilized silver nanoparticles kill and prevent biofilm formation by methicillin-resistant Staphylococcus aureus. Biomaterials, 2017, 140, 1-15.	11.4	170
22	Data on the surface morphology of additively manufactured Ti-6Al-4V implants during processing by plasma electrolytic oxidation. Data in Brief, 2017, 13, 385-389.	1.0	7
23	vIL-10-overexpressing human MSCs modulate na \tilde{A}^- ve and activated T lymphocytes following induction of collagenase-induced osteoarthritis. Stem Cell Research and Therapy, 2016, 7, 74.	5.5	25
24	Allogeneic chondrogenically differentiated human mesenchymal stromal cells do not induce immunogenic responses from T lymphocytes in vitro. Cytotherapy, 2016, 18, 957-969.	0.7	16
25	Differentiation of Vascular Stem Cells Contributes to Ectopic Calcification of Atherosclerotic Plaque. Stem Cells, 2016, 34, 913-923.	3.2	38
26	Animal Models of Bone Loss in Inflammatory Arthritis: from Cytokines in the Bench to Novel Treatments for Bone Loss in the Bedsideâ€"a Comprehensive Review. Clinical Reviews in Allergy and Immunology, 2016, 51, 27-47.	6.5	50
27	Immune Modulation to Improve Tissue Engineering Outcomes for Cartilage Repair in the Osteoarthritic Joint. Tissue Engineering - Part B: Reviews, 2015, 21, 55-66.	4.8	50
28	Recapitulating endochondral ossification: a promising route to <i>in vivo</i> bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 889-902.	2.7	112
29	Enamel Matrix Derivative has No Effect on the Chondrogenic Differentiation of Mesenchymal Stem Cells. Frontiers in Bioengineering and Biotechnology, 2014, 2, 29.	4.1	6
30	Scaffold Considerations for Osteochondral Tissue Engineering. , 2012, , 779-801.		0
31	Evaluation of early healing events around mesenchymal stem cell-seeded collagen–glycosaminoglycan scaffold. An experimental study in Wistar rats. Oral and Maxillofacial Surgery, 2011, 15, 31-39.	1.3	25
32	In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskeletal Disorders, 2011, 12, 31.	1.9	194
33	Clinically Translatable Cell Tracking and Quantification by MRI in Cartilage Repair Using Superparamagnetic Iron Oxides. PLoS ONE, 2011, 6, e17001.	2.5	72
34	Towards in vitro vascularisation of collagen-GAG scaffolds. , 2011, 21, 15-30.		70
35	Prevascular Structures Promote Vascularization in Engineered Human Adipose Tissue Constructs upon Implantation. Cell Transplantation, 2010, 19, 1007-1020.	2.5	71
36	Fibroblast Growth Factor Receptors in <i>In Vitro</i> and <i>In Vivo</i> Chondrogenesis: Relating Tissue Engineering Using Adult Mesenchymal Stem Cells to Embryonic Development. Tissue Engineering - Part A, 2010, 16, 545-556.	3.1	75

#	Article	IF	CITATION
37	Adult Human Bone Marrow– and Adipose Tissue–Derived Stromal Cells Support the Formation of Prevascular-like Structures from Endothelial Cells <i>In Vitro</i> . Tissue Engineering - Part A, 2010, 16, 101-114.	3.1	121
38	The Role of Hypoxia in Bone Marrow–Derived Mesenchymal Stem Cells: Considerations for Regenerative Medicine Approaches. Tissue Engineering - Part B: Reviews, 2010, 16, 159-168.	4.8	251
39	Modulating Endochondral Ossification of Multipotent Stromal Cells for Bone Regeneration. Tissue Engineering - Part B: Reviews, 2010, 16, 385-395.	4.8	82
40	Chondrogenic Priming of Human Bone Marrow Stromal Cells: A Better Route to Bone Repair?. Tissue Engineering - Part C: Methods, 2009, 15, 285-295.	2.1	121
41	Gene expression by marrow stromal cells in a porous collagen–glycosaminoglycan scaffold is affected by pore size and mechanical stimulation. Journal of Materials Science: Materials in Medicine, 2008, 19, 3455-3463.	3.6	79
42	Effects of iron oxide incorporation for long term cell tracking on MSC differentiation in vitro and in vivo. Biochemical and Biophysical Research Communications, 2008, 369, 1076-1081.	2.1	129
43	A Collagen-glycosaminoglycan Scaffold Supports Adult Rat Mesenchymal Stem Cell Differentiation Along Osteogenic and Chondrogenic Routes. Tissue Engineering, 2006, 12, 459-468.	4.6	209
44	Chondrogenic Priming of Human Bone Marrow Stromal Cells: A Better Route to Bone Repair?. Tissue Engineering - Part A, 0, , 110306231138043.	3.1	3