Göran Ahlsén

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11743999/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Extracellular Architecture of Adherens Junctions Revealed by Crystal Structures of Type I Cadherins. Structure, 2011, 19, 244-256.	3.3	347
2	Crystal structure, conformational fixation and entry-related interactions of mature ligand-free HIV-1 Env. Nature Structural and Molecular Biology, 2015, 22, 522-531.	8.2	333
3	Two-step adhesive binding by classical cadherins. Nature Structural and Molecular Biology, 2010, 17, 348-357.	8.2	184
4	Molecular Logic of Neuronal Self-Recognition through Protocadherin Domain Interactions. Cell, 2015, 163, 629-642.	28.9	141
5	Structural basis of adhesive binding by desmocollins and desmogleins. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7160-7165.	7.1	137
6	T-cadherin structures reveal a novel adhesive binding mechanism. Nature Structural and Molecular Biology, 2010, 17, 339-347.	8.2	118
7	Nectin ectodomain structures reveal a canonical adhesive interface. Nature Structural and Molecular Biology, 2012, 19, 906-915.	8.2	104
8	Synthesis and Comparative Molecular Field Analysis (CoMFA) of Symmetric and Nonsymmetric Cyclic Sulfamide HIV-1 Protease Inhibitors. Journal of Medicinal Chemistry, 2001, 44, 155-169.	6.4	101
9	Molecular design principles underlying β-strand swapping in the adhesive dimerization of cadherins. Nature Structural and Molecular Biology, 2011, 18, 693-700.	8.2	101
10	Splice Form Dependence of β-Neurexin/Neuroligin Binding Interactions. Neuron, 2010, 67, 61-74.	8.1	89
11	Structural Basis of Diverse Homophilic Recognition by Clustered α- and β-Protocadherins. Neuron, 2016, 90, 709-723.	8.1	87
12	Structural and energetic determinants of adhesive binding specificity in type I cadherins. Proceedings of the United States of America, 2014, 111, E4175-84.	7.1	78
13	Structure and Binding Mechanism of Vascular Endothelial Cadherin: A Divergent Classical Cadherin. Journal of Molecular Biology, 2011, 408, 57-73.	4.2	76
14	Design and Fast Synthesis of C-Terminal Duplicated PotentC2-Symmetric P1/P1â€~-Modified HIV-1 Protease Inhibitors. Journal of Medicinal Chemistry, 1999, 42, 3835-3844.	6.4	75
15	Neuron-Subtype-Specific Expression, Interaction Affinities, and Specificity Determinants of DIP/Dpr Cell Recognition Proteins. Neuron, 2018, 100, 1385-1400.e6.	8.1	65
16	Interactions between the Ig-Superfamily Proteins DIP-α and Dpr6/10 Regulate Assembly of Neural Circuits. Neuron, 2018, 100, 1369-1384.e6.	8.1	64
17	Dynamic Properties of a Type II Cadherin Adhesive Domain: Implications for the Mechanism of Strand-Swapping of Classical Cadherins. Structure, 2008, 16, 1195-1205.	3.3	55
18	Protocadherin <i>cis</i> -dimer architecture and recognition unit diversity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9829-E9837.	7.1	55

Göran Ahlsén

#	ARTICLE	IF	CITATIONS
19	Homophilic and Heterophilic Interactions of Type II Cadherins Identify Specificity Groups Underlying Cell-Adhesive Behavior. Cell Reports, 2018, 23, 1840-1852.	6.4	54
20	\hat{I}^3 -Protocadherin structural diversity and functional implications. ELife, 2016, 5, .	6.0	54
21	Mechanotransduction by PCDH15 Relies on a Novel cis-Dimeric Architecture. Neuron, 2018, 99, 480-492.e5.	8.1	43
22	Crystal structures of <i>Drosophila</i> N-cadherin ectodomain regions reveal a widely used class of Ca ²⁺ -free interdomain linkers. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E127-34.	7.1	40
23	Effects of ALS-associated TANK binding kinase 1 mutations on protein–protein interactions and kinase activity. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24517-24526.	7.1	37
24	Molecular basis of sidekick-mediated cell-cell adhesion and specificity. ELife, 2016, 5, .	6.0	36
25	Family-wide Structural and Biophysical Analysis of Binding Interactions among Non-clustered δ-Protocadherins. Cell Reports, 2020, 30, 2655-2671.e7.	6.4	35
26	Optimization of P1-P3 groups in symmetric and asymmetric HIV-1 protease inhibitors. FEBS Journal, 2003, 270, 1746-1758.	0.2	34
27	Crystal Structures of \hat{l}^2 -Neurexin 1 and \hat{l}^2 -Neurexin 2 Ectodomains and Dynamics of Splice Insertion Sequence 4. Structure, 2008, 16, 410-421.	3.3	33
28	Complementary Chimeric Isoforms Reveal Dscam1 Binding Specificity InÂVivo. Neuron, 2012, 74, 261-268.	8.1	32
29	DIP/Dpr interactions and the evolutionary design of specificity in protein families. Nature Communications, 2020, 11, 2125.	12.8	26
30	Synaptogenic activity of the axon guidance molecule Robo2 underlies hippocampal circuit function. Cell Reports, 2021, 37, 109828.	6.4	18
31	How clustered protocadherin binding specificity is tuned for neuronal self-/nonself-recognition. ELife, 2022, 11, .	6.0	18