
Lingqian Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11741278/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ectopic Expression of FVIII in HPCs and MSCs Derived from hiPSCs with Site-Specific Integration of ITGA2B Promoter-Driven BDDF8 Gene in Hemophilia A. International Journal of Molecular Sciences, 2022, 23, 623.	4.1	4
2	Site-Specific Integration of <i>TRAIL</i> in iPSC-Derived Mesenchymal Stem Cells for Targeted Cancer Therapy. Stem Cells Translational Medicine, 2022, 11, 297-309.	3.3	16
3	Comprehensive Analysis of Congenital Adrenal Hyperplasia Using Long-Read Sequencing. Clinical Chemistry, 2022, 68, 927-939.	3.2	23
4	Detection of Spinal Muscular Atrophy Using a Duplexed Real-Time PCR Approach With Locked Nucleic Acid-Modified Primers. Annals of Laboratory Medicine, 2021, 41, 101-107.	2.5	5
5	Loss of PIGK function causes severe infantile encephalopathy and extensive neuronal apoptosis. Human Genetics, 2021, 140, 791-803.	3.8	6
6	Targeted addition of mini-dystrophin into rDNA locus of Duchenne muscular dystrophy patient-derived iPSCs. Biochemical and Biophysical Research Communications, 2021, 545, 40-45.	2.1	5
7	A More Universal Approach to Comprehensive Analysis of Thalassemia Alleles (CATSA). Journal of Molecular Diagnostics, 2021, 23, 1195-1204.	2.8	55
8	An Episomal CRISPR/Cas12a System for Mediating Efficient Gene Editing. Life, 2021, 11, 1262.	2.4	4
9	Noninvasive Prenatal Testing of Methylmalonic Acidemia cblC Type Using the cSMART Assay for MMACHC Gene Mutations. Frontiers in Genetics, 2021, 12, 750719.	2.3	6
10	Development and validation of a haplotypeâ€free technique for nonâ€invasive prenatal diagnosis of spinal muscular atrophy. Journal of Clinical Laboratory Analysis, 2020, 34, e23046.	2.1	7
11	REDBot: Natural language process methods for clinical copy number variation reporting in prenatal and products of conception diagnosis. Molecular Genetics & Genomic Medicine, 2020, 8, e1488.	1.2	3
12	Mesenchymal stem cells derived from iPSCs expressing interleukin-24 inhibit the growth of melanoma in the tumor-bearing mouse model. Cancer Cell International, 2020, 20, 33.	4.1	14
13	Long-read DNA sequencing fully characterized chromothripsis in a patient with Langer–Giedion syndrome and Cornelia de Lange syndrome-4. Journal of Human Genetics, 2020, 65, 667-674.	2.3	24
14	Gene Therapy for Hemophilia A: Where We Stand. Current Gene Therapy, 2020, 20, 142-151.	2.0	7
15	Ectopic expression of factor VIII in MSCs and hepatocytes derived from rDNA targeted hESCs. Clinica Chimica Acta, 2019, 495, 656-663.	1.1	2
16	Molecular investigation in Chinese patients with primary carnitine deficiency. Molecular Genetics & Genomic Medicine, 2019, 7, e901.	1.2	11
17	ssODN-Mediated In-Frame Deletion with CRISPR/Cas9 Restores FVIII Function in Hemophilia A-Patient-Derived iPSCs and ECs. Molecular Therapy - Nucleic Acids, 2019, 17, 198-209.	5.1	23
18	Clinical utility of noninvasive prenatal screening for expanded chromosome disease syndromes. Genetics in Medicine, 2019, 21, 1998-2006.	2.4	158

Lingqian Wu

#	Article	IF	CITATIONS
19	Translocation breakpoint disrupting the host SNHG14 gene but not coding genes or snoRNAs in typical Prader-Willi syndrome. Journal of Human Genetics, 2019, 64, 647-652.	2.3	12
20	Gene Therapy for Hemophilia and Duchenne Muscular Dystrophy in China. Human Gene Therapy, 2018, 29, 146-150.	2.7	5
21	Truncating mutations of HIBCH tend to cause severe phenotypes in cases with HIBCH deficiency: a case report and brief literature review. Journal of Human Genetics, 2018, 63, 851-855.	2.3	11
22	Seamless Genetic Conversion of <i>SMN2</i> to <i>SMN1</i> via CRISPR/Cpf1 and Single-Stranded Oligodeoxynucleotides in Spinal Muscular Atrophy Patient-Specific Induced Pluripotent Stem Cells. Human Gene Therapy, 2018, 29, 1252-1263.	2.7	50
23	Restoration of SMN expression in mesenchymal stem cells derived from gene-targeted patient-specific iPSCs. Journal of Molecular Histology, 2018, 49, 27-37.	2.2	6
24	Paired CRISPR/Cas9 Nickases Mediate Efficient Site-Specific Integration of F9 into rDNA Locus of Mouse ESCs. International Journal of Molecular Sciences, 2018, 19, 3035.	4.1	19
25	XRCC2 mutation causes meiotic arrest, azoospermia and infertility. Journal of Medical Genetics, 2018, 55, 628-636.	3.2	54
26	De Novo Mutations of CCNK Cause a Syndromic Neurodevelopmental Disorder with Distinctive Facial Dysmorphism. American Journal of Human Genetics, 2018, 103, 448-455.	6.2	17
27	Characterization of chromosomal abnormalities in pregnancy losses reveals critical genes and loci for human early development. Human Mutation, 2017, 38, 669-677.	2.5	28
28	Notable Carrier Risks for Individuals Having Two Copies of <i>SMN1</i> in Spinal Muscular Atrophy Families with 2â€copy Alleles: Estimation Based on Chinese Metaâ€analysis Data. Journal of Genetic Counseling, 2017, 26, 72-78.	1.6	5
29	Targeted exome sequencing identifies novel compound heterozygous mutations in P3H1 in a fetus with osteogenesis imperfecta type VIII. Clinica Chimica Acta, 2017, 464, 170-175.	1.1	4
30	Enhanced tumor growth inhibition by mesenchymal stem cells derived from iPSCs with targeted integration of interleukin24 into rDNA loci. Oncotarget, 2017, 8, 40791-40803.	1.8	20
31	In situ genetic correction of F8 intron 22 inversion in hemophilia A patient-specific iPSCs. Scientific Reports, 2016, 6, 18865.	3.3	43
32	A New Next-Generation Sequencing-Based Assay for Concurrent Preimplantation Genetic Diagnosis of Charcot-Marie-Tooth Disease Type 1A and Aneuploidy Screening. Journal of Genetics and Genomics, 2016, 43, 155-159.	3.9	10
33	Targeted next-generation sequencing identifies novel compound heterozygous mutations of DYNC2H1 in a fetus with short rib-polydactyly syndrome, type III. Clinica Chimica Acta, 2015, 447, 47-51.	1.1	20
34	Noninvasive Prenatal Testing for Wilson Disease by Use of Circulating Single-Molecule Amplification and Resequencing Technology (cSMART). Clinical Chemistry, 2015, 61, 172-181.	3.2	85
35	Mutational Analyses of the <i>FMR1</i> Gene in Chinese Pediatric Population of Fragile X Suspects. Journal of Child Neurology, 2015, 30, 803-806.	1.4	12
36	Cryptic FMR1 mosaic deletion in a phenotypically normal mother of a boy with fragile X syndrome: case report. BMC Medical Genetics, 2014, 15, 125.	2.1	11

Lingqian Wu

#	Article	IF	CITATIONS
37	TALE nickase mediates high efficient targeted transgene integration at the human multi-copy ribosomal DNA locus. Biochemical and Biophysical Research Communications, 2014, 446, 261-266.	2.1	45
38	Copy Number Variation Sequencing for Comprehensive Diagnosis of Chromosome Disease Syndromes. Journal of Molecular Diagnostics, 2014, 16, 519-526.	2.8	106
39	Nonâ€invasive prenatal testing of fetal whole chromosome aneuploidy by massively parallel sequencing. Prenatal Diagnosis, 2013, 33, 409-415.	2.3	134
40	Nonviral Gene Targeting at rDNA Locus of Human Mesenchymal Stem Cells. BioMed Research International, 2013, 2013, 1-10.	1.9	10
41	Targeting of the Human Coagulation Factor IX Gene at rDNA Locus of Human Embryonic Stem Cells. PLoS ONE, 2012, 7, e37071.	2.5	21
42	A family with partial duplication/deletion 4p due to a balanced t (4; 15) (p16.2; p11.2) translocation. American Journal of Medical Genetics, Part A, 2011, 155, 656-659.	1.2	4
43	A non-viral vector for potential DMD gene therapy study by targeting a minidystrophin-GFP fusion gene into the hrDNA locus. Acta Biochimica Et Biophysica Sinica, 2009, 41, 1053-1060.	2.0	10
44	A <i>ZRS</i> duplication causes syndactyly type IV with tibial hypoplasia. American Journal of Medical Genetics, Part A, 2009, 149A, 816-818.	1.2	35
45	A syndactyly type IV locus maps to 7q36. Journal of Human Genetics, 2007, 52, 561-564.	2.3	35
46	Investigation of hrDNA targeting vector-mediated tumor-specific suicide gene therapy for hepatocellular carcinoma. Science Bulletin, 2006, 51, 2342-2350.	1.7	1
47	Expression of reconstructive hFVIII in the hrDNA by using hrDNA targeting vector. Science Bulletin, 2005, 50, 2187-2192.	1.7	4
48	The Combination of Suicide Gene Therapy and Radiation Enhances the Killing of Nasopharyngeal Carcinoma Xenographs. Journal of Radiation Research, 2004, 45, 281-289.	1.6	8
49	A novel fusion suicide gene yeast CDglyTK plays a role in radio-gene therapy of nasopharyngeal carcinoma. Cancer Gene Therapy, 2004, 11, 790-796.	4.6	16