
Tapati Chakraborti

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11738746/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of matrix metalloproteinases: an overview. Molecular and Cellular Biochemistry, 2003, 253, 269-285.	1.4	982
2	Oxidant, Mitochondria and Calcium. Cellular Signalling, 1999, 11, 77-85.	1.7	247
3	Protective role of magnesium in cardiovascular diseases: a review. Molecular and Cellular Biochemistry, 2002, 238, 163-179.	1.4	201
4	Clinical implications of matrix metalloproteinases. Molecular and Cellular Biochemistry, 2003, 252, 305-329.	1.4	135
5	Protective role of epigallocatechin-3-gallate in health and disease: A perspective. Biomedicine and Pharmacotherapy, 2016, 78, 50-59.	2.5	126
6	Oxidant-Mediated Activation of Mitogen- Activated Protein Kinases and Nuclear Transcription Factors in the Cardiovascular System. Cellular Signalling, 1998, 10, 675-683.	1.7	103
7	Mitochondrial calpain system: An overview. Archives of Biochemistry and Biophysics, 2010, 495, 1-7.	1.4	72
8	Targets of oxidative stress in cardiovascular system. Molecular and Cellular Biochemistry, 1998, 187, 1-10.	1.4	69
9	Complement activation in heart diseases. Cellular Signalling, 2000, 12, 607-617.	1.7	64
10	Structure and evolutionary aspects of matrix metalloproteinases: a brief overview. Molecular and Cellular Biochemistry, 2003, 253, 31-40.	1.4	61
11	β-adrenergic mechanisms in cardiac diseases:. Cellular Signalling, 2000, 12, 499-513.	1.7	49
12	Down-regulation of protein kinase C attenuates the oxidant hydrogen peroxide-mediated activation of phospholipase A2 in pulmonary vascular smooth muscle cells. Cellular Signalling, 1995, 7, 75-83.	1.7	46
13	Role of an aprotinin-sensitive protease in the activation of Ca2+-ATPase by superoxide radical (O2) in microsomes of pulmonary vascular smooth muscle. Biochemical Journal, 1996, 317, 885-890.	1.7	38
14	Proteolytic Activation of Protein Kinase Cα by Peroxynitrite in Stimulating Cytosolic Phospholipase A2in Pulmonary Endothelium: Involvement of a Pertussis Toxin Sensitive Proteinâ€. Biochemistry, 2005, 44, 5246-5257.	1.2	37
15	Calcium signaling phenomena in heart diseases: a perspective. Molecular and Cellular Biochemistry, 2007, 298, 1-40.	1.4	36
16	Drug Resistance in Protozoan Parasites: An Incessant Wrestle for Survival. Journal of Global Antimicrobial Resistance, 2019, 18, 1-11.	0.9	35
17	μ-Calpain mediated cleavage of the Na+/Ca2+ exchanger in isolated mitochondria under A23187 induced Ca2+ stimulation. Archives of Biochemistry and Biophysics, 2009, 482, 66-76.	1.4	34
18	Inhibition of MMP-9 by green tea catechins and prediction of their interaction by molecular docking analysis. Biomedicine and Pharmacotherapy, 2016, 84, 340-347.	2.5	34

#	Article	IF	CITATIONS
19	115kDa serine protease confers sustained protection to visceral leishmaniasis caused by Leishmania donovani via IFN-γ induced down-regulation of TNF-α mediated MMP-9 activity. Immunobiology, 2013, 218, 114-126.	0.8	30
20	Role of hydroxyl radical in the oxidant H2O2-mediated Ca2+ release from pulmonary smooth muscle mitochondria. Molecular and Cellular Biochemistry, 1996, 159, 95-103.	1.4	24
21	Inhibition of Na+/Ca2+ exchanger by peroxynitrite in microsomes of pulmonary smooth muscle: role of matrix metalloproteinase-2. Biochimica Et Biophysica Acta - General Subjects, 2004, 1671, 70-78.	1.1	24
22	<i>In Situ</i> Immunolocalization and Stage-Dependent Expression of a Secretory Serine Protease in <i>Leishmania donovani</i> and Its Role as a Vaccine Candidate. Vaccine Journal, 2010, 17, 660-667.	3.2	24
23	Identification of calpastatin and μ-calpain and studies of their association in pulmonary smooth muscle mitochondria. Archives of Biochemistry and Biophysics, 2007, 466, 290-299.	1.4	22
24	Inhibition of pro-/active MMP-2 by green tea catechins and prediction of their interaction by molecular docking studies. Molecular and Cellular Biochemistry, 2017, 427, 111-122.	1.4	22
25	Role of an aprotinin-sensitive protease in protein kinase Cα-mediated activation of cytosolic phospholipase A2 by calcium ionophore (A23187) in pulmonary endothelium. Cellular Signalling, 2004, 16, 751-762.	1.7	21
26	Submitochondrial localization of associated μ-calpain and calpastatin. Archives of Biochemistry and Biophysics, 2008, 470, 176-186.	1.4	21
27	Role of Ca2+-Dependent Metalloprotease-2 in Stimulating Ca2+ATPase Activity Under Peroxynitrite Treatment in Bovine Pulmonary Artery Smooth Muscle Membrane. IUBMB Life, 2002, 53, 167-173.	1.5	20
28	Immunolocalization and characterization of two novel proteases in Leishmania donovani: Putative roles in host invasion and parasite development. Biochimie, 2010, 92, 1274-1286.	1.3	20
29	Bioassay-based Corchorus capsularis L. leaf-derived β-sitosterol exerts antileishmanial effects against Leishmania donovani by targeting trypanothione reductase. Scientific Reports, 2020, 10, 20440.	1.6	20
30	Identification, purification, and characterization of a secretory serine protease in an Indian strain of LeishmaniaÂdonovani. Molecular and Cellular Biochemistry, 2009, 320, 1-14.	1.4	19
31	Identification and characterization of a Leishmania donovani serine protease inhibitor: Possible role in regulation of host serine proteases. Life Sciences, 2016, 144, 218-225.	2.0	17
32	Calcium-dependent cleavage of the Na+/Ca2+ exchanger by m-calpain in isolated endoplasmic reticulum. Journal of Biochemistry, 2010, 147, 225-235.	0.9	16
33	Oxidant-mediated proteolytic activation of Ca2+-ATPase in microsomes of pulmonary smooth muscle. FEBS Letters, 1996, 387, 171-174.	1.3	15
34	TLR mediated GSK3β activation suppresses CREB mediated IL-10 production to induce a protective immune response against murine visceral leishmaniasis. Biochimie, 2014, 107, 235-246.	1.3	15
35	In vitro anti-leishmanial efficacy of potato tuber extract (PTEx): Leishmanial serine protease(s) as putative target. Experimental Parasitology, 2014, 146, 11-19.	0.5	15
36	Epigallocatechin Gallate with Potent Anti- <i>Helicobacter pylori</i> Activity Binds Efficiently to Its Histone-like DNA Binding Protein. ACS Omega, 2021, 6, 3548-3570.	1.6	15

TAPATI CHAKRABORTI

#	Article	IF	CITATIONS
37	Role of Proteases in Lung Disease: A Brief Overview. , 2017, , 333-374.		15
38	Role of ADP ribosylation factor6â^' Cytohesin1â^'PhospholipaseD signaling axis in U46619 induced activation of NADPH oxidase in pulmonary artery smooth muscle cell membrane. Archives of Biochemistry and Biophysics, 2017, 633, 1-14.	1.4	14
39	Identification, purification and partial characterization of tissue inhibitor of matrix metalloproteinase-2 in bovine pulmonary artery smooth muscle. Molecular and Cellular Biochemistry, 2003, 254, 275-287.	1.4	13
40	Solubilization, purification and reconstitution of Ca2+-ATPase from bovine pulmonary artery smooth muscle microsomes by different detergents: Preservation of native structure and function of the enzyme by DHPC. Biochimica Et Biophysica Acta - General Subjects, 2006, 1760, 20-31.	1.1	13
41	Role of Spm–Cerâ€51P signalling pathway in MMPâ€2 mediated U46619â€induced proliferation of pulmonary artery smooth muscle cells: protective role of epigallocatechinâ€3â€gallate. Cell Biochemistry and Function, 2015, 33, 463-477.	1.4	13
42	Protective inflammatory response against visceral leishmaniasis with potato tuber extract: A new approach of successful therapy. Biomedicine and Pharmacotherapy, 2016, 83, 1295-1302.	2.5	13
43	Role of membrane-associated Ca+ dependent matrix metalloprotease-2 in the oxidant activation of Ca2+Atpase by tertiary butylhydroperoxide. Molecular and Cellular Biochemistry, 2002, 237, 85-93.	1.4	12
44	Role of MMP-2 in PKCδ-mediated inhibition of Na+ dependent Ca2+ uptake in microsomes of pulmonary smooth muscle: Involvement of a pertussis toxin sensitive protein. Molecular and Cellular Biochemistry, 2005, 280, 107-117.	1.4	12
45	Protective role of epigallocatechin-3-gallate in NADPH oxidase-MMP2-Spm-Cer-S1P signalling axis mediated ET-1 induced pulmonary artery smooth muscle cell proliferation. Journal of Cell Communication and Signaling, 2019, 13, 473-489.	1.8	12
46	Exquisite binding interaction of 18β-Glycyrrhetinic acid with histone like DNA binding protein of Helicobacter pylori: A computational and experimental study. International Journal of Biological Macromolecules, 2020, 161, 231-246.	3.6	12
47	Role of PKCαâ^'p38MAPKâ^'Giα axis in peroxynitrite-mediated inhibition of β-adrenergic response in pulmonary artery smooth muscle cells. Cellular Signalling, 2013, 25, 512-526.	1.7	11
48	Cross-talk between NADPH oxidase-PKCα-p38MAPK and NF-κB-MT1MMP in activating proMMP-2 by ET-1 in pulmonary artery smooth muscle cells. Molecular and Cellular Biochemistry, 2016, 415, 13-28.	1.4	11
49	Serine protease inhibitors rich Coccinia grandis (L.) Voigt leaf extract induces protective immune responses in murine visceral leishmaniasis. Biomedicine and Pharmacotherapy, 2019, 111, 224-235.	2.5	11
50	Role of matrix metalloprotease-2 in oxidant activation of Ca2+ATPase by hydrogen peroxide in pulmonary vascular smooth muscle plasma membrane. Journal of Biosciences, 2003, 28, 205-213.	0.5	10
51	m-Calpain-mediated cleavage of Na+/Ca2+ exchanger-1 in caveolae vesicles isolated from pulmonary artery smooth muscle. Molecular and Cellular Biochemistry, 2010, 341, 167-180.	1.4	10
52	Leishmania donovani serine protease encapsulated in liposome elicits protective immunity in experimental visceral leishmaniasis. Microbes and Infection, 2018, 20, 37-47.	1.0	9
53	Role of hydroxyl radical in the stimulation of arachidonic acid release caused by H2O2 in pulmonary smooth muscle cells: Protective effect of anion channel blocker. Molecular and Cellular Biochemistry, 1995, 146, 91-98.	1.4	8
54	Ageâ€dependent change in arachidonic acid metabolic capacity in rat alveolar macrophages. IUBMB Life, 1999, 47, 501-507.	1.5	8

TAPATI CHAKRABORTI

#	Article	IF	CITATIONS
55	Role of TGF-β1 and TNF-α in IL-1β mediated activation of proMMP-9 in pulmonary artery smooth muscle cells: Involvement of an aprotinin sensitive protease. Archives of Biochemistry and Biophysics, 2011, 513, 61-69.	1.4	8
56	Cross talk between MMP2-Spm-Cer-S1P and ERK1/2 in proliferation of pulmonary artery smooth muscle cells under angiotensin II stimulation. Archives of Biochemistry and Biophysics, 2016, 603, 91-101.	1.4	8
57	Coccinia grandis (L.) Voigt Leaf Extract Exhibits Antileishmanial Effect Through Pro-inflammatory Response: An In Vitro Study. Current Microbiology, 2017, 74, 59-67.	1.0	8
58	Role of catechins on ET-1-induced stimulation of PLD and NADPH oxidase activities in pulmonary smooth muscle cells: determination of the probable mechanism by molecular docking studies. Biochemistry and Cell Biology, 2018, 96, 417-432.	0.9	8
59	White jute (Corchorus capsularis L.) leaf extract has potent leishmanicidal activity against Leishmania donovani. Parasitology International, 2019, 71, 41-45.	0.6	8
60	Role of PLDâ^'PKCζ signaling axis in p47phox phosphorylation for activation of NADPH oxidase by angiotensin II in pulmonary artery smooth muscle cells. Cell Biology International, 2019, 43, 678-694.	1.4	8
61	Role of curcumin in PLD activation by Arf6-cytohesin1 signaling axis in U46619-stimulated pulmonary artery smooth muscle cells. Molecular and Cellular Biochemistry, 2018, 438, 97-109.	1.4	7
62	Immune complex antigens as a tool in serodiagnosis of kala-azar. Molecular and Cellular Biochemistry, 2003, 253, 191-198.	1.4	6
63	Promiscuity of an unrelated anthrol reductase of Talaromyces islandicus WF-38-12. Catalysis Science and Technology, 2021, 11, 474-478.	2.1	6
64	Oxidant-Mediated Activation of Cytosolic Phospholipase A2in Pulmonary Endothelium: Role of Protein Kinase Cα and a Pertussis Toxin–Sensitive Protein. Endothelium: Journal of Endothelial Cell Research, 2005, 12, 121-131.	1.7	5
65	Curative efficacy of purified serine protease inhibitor PTF3 from potato tuber in experimental visceral leishmaniasis. International Immunopharmacology, 2020, 85, 106623.	1.7	5
66	Role of hydroxyl radical in superoxide induced microsomal lipid peroxidation: Protective effect of anion channel blocker. Journal of Biosciences, 1996, 21, 35-43.	0.5	4
67	Functional attribution of LdISP, an endogenous serine protease inhibitor from Leishmania donovani in promoting infection. Biochimie, 2018, 147, 105-113.	1.3	4
68	PKCζ–NADPH Oxidase–PKCα Dependent Kv1.5 Phosphorylation by Endothelin-1 Modulates Nav1.5–NCX1–Cav1.2 Axis in Stimulating Ca2+ Level in Caveolae of Pulmonary Artery Smooth Muscle Cells. Cell Biochemistry and Biophysics, 2021, 79, 57-71.	0.9	4
69	Matrix metalloprotease 2-mediated activation of Ca(2+)-ATPase by superoxide radical (O2*-) in plasma membrane of bovine pulmonary vascular smooth muscle. Indian Journal of Biochemistry and Biophysics, 2002, 39, 390-6.	0.2	4
70	Role of MMP-2 in inhibiting Na+ dependent Ca2+ uptake by H2O2 in microsomes isolated from pulmonary smooth muscle. Molecular and Cellular Biochemistry, 2005, 270, 79-87.	1.4	3
71	Role of PKC-ζ in NADPH oxidase–PKCα–Giα axis dependent inhibition of β-adrenergic response by U46619 i pulmonary artery smooth muscle cells. Archives of Biochemistry and Biophysics, 2013, 540, 133-144.	in 1.4	3

An Overview of Endoplasmic Reticulum Calpain System. , 2013, , 3-19.

#	Article	IF	CITATIONS
73	Role of PKCζâ€NADPH oxidase signaling axis in PKCαâ€mediated Giα2 phosphorylation for inhibition of adenylate cyclase activity by angiotensin II in pulmonary artery smooth muscle cells. Cell Biology International, 2020, 44, 1142-1155.	1.4	1
74	Multifaceted Role of Matrix Metalloproteases on Human Diseases. , 2017, , 21-40.		1
75	Proteases as Virulence Factors in Leishmania: Focus on Serine Proteases as Possible Therapeutic Targets. , 2013, , 135-161.		1
76	Chapter 16 Ca2+ dynamics under oxidant stress in the cardiovascular system. Cell and Molecular Response To Stress, 2001, , 213-228.	0.4	0
77	Submitochondrial Calpains in Pathophysiological Consequences. , 2017, , 385-395.		0
78	Matrix Metalloprotease-2 in the Development and Progression of Cardiovascular Diseases. , 2014, , 351-364.		0
79	Pathophysiological Aspects of Lipoprotein-Associated Phospholipase A2: A Brief Overview. , 2014, , 115-133.		0
80	Oxidative Stress in Protozoan Parasites: A Close Surveillance of Proteases and Endogenous Protease Inhibitors in Host-Parasite Interaction. , 2019, , 229-244.		0
81	Environmental and Occupational agents and Cancer Drug-Induced Oxidative Stress in Pulmonary Fibrosis. , 2020, , 271-293.		0