Jonathan F Lovell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11737141/publications.pdf

Version: 2024-02-01

38742 24982 12,327 125 50 109 citations h-index g-index papers 130 130 130 13108 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Traceless antibiotic-crosslinked micelles for rapid clearance of intracellular bacteria. Journal of Controlled Release, 2022, 341, 329-340.	9.9	20
2	Anticancer Vaccination with Immunogenic Micelles That Capture and Release Pristine CD8 ⁺ T-Cell Epitopes and Adjuvants. ACS Applied Materials & Interfaces, 2022, 14, 2510-2521.	8.0	5
3	Anti-cancer liposomal chemophototherapy using bilayer-localized photosensitizer and cabazitaxel. Nano Research, 2022, 15, 4302-4309.	10.4	8
4	Single-treatment tumor ablation with photodynamic liposomal irinotecan sucrosulfate. Translational Oncology, 2022, 19, 101390.	3.7	9
5	Microparticles: biogenesis, characteristics and intervention therapy for cancers in preclinical and clinical research. Journal of Nanobiotechnology, 2022, 20, 189.	9.1	17
6	Labeling of Erythrocytes by Porphyrinâ€Phospholipid. Advanced NanoBiomed Research, 2021, 1, 2000013.	3.6	2
7	Antibiotic Cross-linked Micelles with Reduced Toxicity for Multidrug-Resistant Bacterial Sepsis Treatment. ACS Applied Materials & Samp; Interfaces, 2021, 13, 9630-9642.	8.0	19
8	Trans-illumination intestine projection imaging of intestinal motility in mice. Nature Communications, 2021, 12, 1682.	12.8	6
9	Biomimetic Liposomal Nanoplatinum for Targeted Cancer Chemophototherapy. Advanced Science, 2021, 8, 2003679.	11.2	87
10	Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Materials & Delivery Strategies for Melittin-Based Cancer Therapy. ACS Applied Mate	8.0	30
11	Cross-linked Histone as a Nanocarrier for Gut Delivery of Hydrophobic Cargos. ACS Applied Materials & Lamp; Interfaces, 2021, 13, 26712-26720.	8.0	3
12	Surfactantâ€Stripped Micelles with Aggregationâ€Induced Enhanced Emission for Bimodal Gut Imaging In Vivo and Microbiota Tagging Ex Vivo. Advanced Healthcare Materials, 2021, 10, e2100356.	7. 6	12
13	Targeted Micellar Phthalocyanine for Lymph Node Metastasis Homing and Photothermal Therapy in an Orthotopic Colorectal Tumor Model. Nano-Micro Letters, 2021, 13, 145.	27.0	14
14	Two Laser Treatments Can Improve Tumor Ablation Efficiency of Chemophototherapy. Pharmaceutics, 2021, 13, 2183.	4.5	3
15	An Engineered Biomimetic MPER Peptide Vaccine Induces Weakly HIV Neutralizing Antibodies in Mice. Annals of Biomedical Engineering, 2020, 48, 1991-2001.	2.5	13
16	Clinical development and potential of photothermal and photodynamic therapies for cancer. Nature Reviews Clinical Oncology, 2020, 17, 657-674.	27.6	1,622
17	Thinking outside the macrocycle: Potential biomedical roles for nanostructured porphyrins and phthalocyanines — a SPP/JPP Young Investigator Award paper. Journal of Porphyrins and Phthalocyanines, 2020, 24, 1272-1277.	0.8	3
18	Nanobowl-Supported Liposomes Improve Drug Loading and Delivery. Nano Letters, 2020, 20, 4177-4187.	9.1	81

#	Article	IF	CITATIONS
19	Relieving immunosuppression during long-term anti-angiogenesis therapy using photodynamic therapy and oxygen delivery. Nanoscale, 2020, 12, 14788-14800.	5.6	11
20	Facile formulation of a long-wavelength cyanine for optical imaging in the second near-infrared window. Biomaterials Science, 2020, 8, 4199-4205.	5.4	16
21	Surfactantâ€Stripped Cabazitaxel Micelles Stabilized by Clotrimazole or Mifepristone. Advanced Therapeutics, 2020, 3, 1900161.	3.2	7
22	Sound Out the Deep Colors: Photoacoustic Molecular Imaging at New Depths. Molecular Imaging, 2020, 19, 153601212098151.	1.4	9
23	Surfactantâ€Stripped Micelles for NIRâ€II Photoacoustic Imaging through 12 cm of Breast Tissue and Whole Human Breasts. Advanced Materials, 2019, 31, e1902279.	21.0	86
24	Liposomal formulations of photosensitizers. Biomaterials, 2019, 218, 119341.	11.4	100
25	A multifunctional biodegradable brush polymer-drug conjugate for paclitaxel/gemcitabine co-delivery and tumor imaging. Nanoscale Advances, 2019, 1, 2761-2771.	4.6	16
26	Pharmacokinetics and pharmacodynamics of liposomal chemophototherapy with short drug-light intervals. Journal of Controlled Release, 2019, 297, 39-47.	9.9	51
27	Indocyanine green binds to DOTAP liposomes for enhanced optical properties and tumor photoablation. Biomaterials Science, 2019, 7, 3158-3164.	5.4	30
28	Organic Fluorescent Probes for Diagnostics and Bio-Imaging. Topics in Medicinal Chemistry, 2019, , 33-53.	0.8	8
29	Surfactant-Stripped Pheophytin Micelles for Multimodal Tumor Imaging and Photodynamic Therapy. ACS Applied Bio Materials, 2019, 2, 544-554.	4.6	16
30	Blood Interactions, Pharmacokinetics, and Depth-Dependent Ablation of Rat Mammary Tumors with Photoactivatable, Liposomal Doxorubicin. Molecular Cancer Therapeutics, 2019, 18, 592-601.	4.1	17
31	Ingestible Contrast Agents for Gastrointestinal Imaging. ChemBioChem, 2019, 20, 462-473.	2.6	18
32	Highly-Soluble Cyanine J-aggregates Entrapped by Liposomes for <i>In Vivo</i> Optical Imaging around 930 nm. Theranostics, 2019, 9, 381-390.	10.0	33
33	Loading and releasing ciprofloxacin in photoactivatable liposomes. Biochemical Engineering Journal, 2019, 141, 43-48.	3.6	17
34	Metalloporphyrin nanoparticles: Coordinating diverse theranostic functions. Coordination Chemistry Reviews, 2019, 379, 99-120.	18.8	103
35	Short Drug–Light Intervals Improve Liposomal Chemophototherapy in Mice Bearing MIA PaCa-2 Xenografts. Molecular Pharmaceutics, 2018, 15, 3682-3689.	4.6	20
36	Multicolor Liposome Mixtures for Selective and Selectable Cargo Release. Nano Letters, 2018, 18, 1331-1336.	9.1	22

#	Article	IF	Citations
37	Naphthalocyanines as contrast agents for photoacoustic and multimodal imaging. Biomedical Engineering Letters, 2018, 8, 215-221.	4.1	21
38	Current taxane formulations and emerging cabazitaxel delivery systems. Nano Research, 2018, 11, 5193-5218.	10.4	39
39	A Tumor Vascularâ€Targeted Interlocking Trimodal Nanosystem That Induces and Exploits Hypoxia. Advanced Science, 2018, 5, 1800034.	11.2	38
40	Detection of Sunlight Exposure with Solar-Sensitive Liposomes that Capture and Release Food Dyes. ACS Applied Nano Materials, 2018, 1, 2739-2747.	5.0	9
41	Ingestible roasted barley for contrast-enhanced photoacoustic imaging in animal and human subjects. Biomaterials, 2018, 175, 72-81.	11.4	13
42	Porphyrin and Phthalocyanine Radiolabeling. Biological and Medical Physics Series, 2018, , 49-78.	0.4	2
43	Enhanced drug delivery using sonoactivatable liposomes with membrane-embedded porphyrins. Journal of Controlled Release, 2018, 286, 358-368.	9.9	71
44	Peptide Delivery Systems for Cancer Vaccines. Advanced Therapeutics, 2018, 1, 1800060.	3.2	30
45	Assessing Photosensitizer Targeting Using Meso-Tetra(Carboxyphenyl) Porphyrin. Molecules, 2018, 23, 892.	3.8	6
46	Recent Progress in Upconversion Photodynamic Therapy. Nanomaterials, 2018, 8, 344.	4.1	106
47	Binding of an amphiphilic phthalocyanine to pre-formed liposomes confers light-triggered cargo release. Journal of Materials Chemistry B, 2018, 6, 7298-7305.	5.8	30
48	Implantable Tin Porphyrin-PEG Hydrogels with pH-Responsive Fluorescence. Biomacromolecules, 2017, 18, 562-567.	5.4	32
49	Deep-tissue photoacoustic imaging at 1064 nm using a contrast agent based on phosphorus phthalocyanine formulation. Proceedings of SPIE, 2017, , .	0.8	1
50	Surfactant-stripped naphthalocyanines for multimodal tumor theranostics with upconversion guidance cream. Nanoscale, 2017, 9, 3391-3398.	5.6	38
51	Multifunctional Liposomes for Imageâ€Guided Intratumoral Chemoâ€Phototherapy. Advanced Healthcare Materials, 2017, 6, 1700253.	7.6	46
52	Bimodal Targeting Using Sulfonated, Mannosylated <scp>PEI</scp> for Combined Gene Delivery and Photodynamic Therapy. Photochemistry and Photobiology, 2017, 93, 600-608.	2.5	7
53	Vessel-Targeted Chemophototherapy with Cationic Porphyrin-Phospholipid Liposomes. Molecular Cancer Therapeutics, 2017, 16, 2452-2461.	4.1	35
54	Intrabilayer ⁶⁴ Cu Labeling of Photoactivatable, Doxorubicin-Loaded Stealth Liposomes. ACS Nano, 2017, 11, 12482-12491.	14.6	62

#	Article	IF	Citations
55	A dual-channel endoscope for quantitative imaging, monitoring, and triggering of doxorubicin release from liposomes in living mice. Scientific Reports, 2017, 7, 15578.	3.3	12
56	Design of Hydrated Porphyrin-Phospholipid Bilayers with Enhanced Magnetic Resonance Contrast. Small, 2017, 13, 1602505.	10.0	18
57	Advanced Functional Nanomaterials for Theranostics. Advanced Functional Materials, 2017, 27, 1603524.	14.9	190
58	Chemophototherapy: An Emerging Treatment Option for Solid Tumors. Advanced Science, 2017, 4, 1600106.	11.2	344
59	Recent applications of phthalocyanines and naphthalocyanines for imaging and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1420.	6.1	119
60	Targeted Nanomaterials for Phototherapy. Nanotheranostics, 2017, 1, 38-58.	5.2	135
61	Deep tissue photoacoustic computed tomography with a fast and compact laser system. Biomedical Optics Express, 2017, 8, 112.	2.9	55
62	12 Theranostic applications of photodynamic molecular beacons. Series in Cellular and Clinical Imaging, 2017, , 249-258.	0.2	0
63	Slit-enabled linear-array photoacoustic tomography with near isotropic spatial resolution in three dimensions. Proceedings of SPIE, 2017, , .	0.8	0
64	Three-dimensional photoacoustic tomography through coherent-weighted focal-line-based image reconstruction. Proceedings of SPIE, 2017, , .	0.8	0
65	Sphingomyelin Liposomes Containing Porphyrin-phospholipid for Irinotecan Chemophototherapy. Theranostics, 2016, 6, 2329-2336.	10.0	50
66	A Phosphorus Phthalocyanine Formulation with Intense Absorbance at 1000 nm for Deep Optical Imaging. Theranostics, 2016, 6, 688-697.	10.0	152
67	Rapid Lightâ€Triggered Drug Release in Liposomes Containing Small Amounts of Unsaturated and Porphyrin–Phospholipids. Small, 2016, 12, 3039-3047.	10.0	119
68	Mechanisms of lightâ€induced liposome permeabilization. Bioengineering and Translational Medicine, 2016, 1, 267-276.	7.1	75
69	Coherent-weighted three-dimensional image reconstruction in linear-array-based photoacoustic tomography. Biomedical Optics Express, 2016, 7, 1957.	2.9	34
70	Therapeutic surfactant-stripped frozen micelles. Nature Communications, 2016, 7, 11649.	12.8	68
71	Surfactantâ€Stripped Frozen Pheophytin Micelles for Multimodal Gut Imaging. Advanced Materials, 2016, 28, 8524-8530.	21.0	67
72	Programmable Real-time Clinical Photoacoustic and Ultrasound Imaging System. Scientific Reports, 2016, 6, 35137.	3.3	169

#	Article	IF	CITATIONS
73	Clinical real-time photoacoustic/ultrasound imaging system at POSTECH., 2016,,.		O
74	Axial PEGylation of Tin Octabutoxy Naphthalocyanine Extends Blood Circulation for Photoacoustic Vascular Imaging. Bioconjugate Chemistry, 2016, 27, 1574-1578.	3.6	35
75	Metal Chelation Modulates Phototherapeutic Properties of Mitoxantrone-Loaded Porphyrin–Phospholipid Liposomes. Molecular Pharmaceutics, 2016, 13, 420-427.	4.6	35
76	Slit-enabled linear-array photoacoustic tomography with near isotropic spatial resolution in three dimensions. Optics Letters, 2016, 41, 127.	3.3	37
77	Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials, 2016, 75, 193-202.	11.4	201
78	A porphyrin-PEG polymer with rapid renal clearance. Biomaterials, 2016, 76, 25-32.	11.4	60
79	In Vivo Volumetric Photoacoustic Images of Gastrointestinal Tracts in Rats using Clinical Photoacoustic/Ultrasound Imaging System. , 2016, , .		0
80	Recent Advances in Higher-Order, Multimodal, Biomedical Imaging Agents. Small, 2015, 11, 4445-4461.	10.0	128
81	Emerging applications of porphyrins in photomedicine. Frontiers in Physics, 2015, 3, .	2.1	141
82	Reversible Micro- and Nano- Phase Programming of Anthraquinone Thermochromism Using Blended Block Copolymers. Langmuir, 2015, 31, 13488-13493.	3.5	6
83	Hexamodal Imaging with Porphyrinâ€Phospholipidâ€Coated Upconversion Nanoparticles. Advanced Materials, 2015, 27, 1785-1790.	21.0	189
84	Functionalization of cobalt porphyrin–phospholipid bilayers with his-tagged ligands and antigens. Nature Chemistry, 2015, 7, 438-446.	13.6	112
85	Quantitative imaging of light-triggered doxorubicin release. Biomedical Optics Express, 2015, 6, 3546.	2.9	18
86	Dual-color photoacoustic lymph node imaging using nanoformulated naphthalocyanines. Biomaterials, 2015, 73, 142-148.	11.4	111
87	Porphyrin-phospholipid liposomes with tunable leakiness. Journal of Controlled Release, 2015, 220, 484-494.	9.9	44
88	Nanomedical engineering: shaping future nanomedicines. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 169-188.	6.1	50
89	^{99m} Tc-labeled porphyrin–lipid nanovesicles. Journal of Liposome Research, 2015, 25, 101-106.	3.3	10
90	Opportunities for Photoacoustic-Guided Drug Delivery. Current Drug Targets, 2015, 16, 571-581.	2.1	65

#	Article	IF	CITATIONS
91	Optically Controlled Pore Formation in Selfâ€Sealing Giant Porphyrin Vesicles. Small, 2014, 10, 1184-1193.	10.0	17
92	Methylene blue microbubbles as a model dual-modality contrast agent for ultrasound and activatable photoacoustic imaging. Journal of Biomedical Optics, 2014, 19, 016005.	2.6	87
93	A quenched binuclear ruthenium(<scp>ii</scp>) dimer activated by another photosensitizer. Chemical Communications, 2014, 50, 3231-3233.	4.1	11
94	Non-invasive multimodal functional imaging of the intestine with frozen micellar naphthalocyanines. Nature Nanotechnology, 2014, 9, 631-638.	31.5	382
95	Pdâ€Porphyrinâ€Crossâ€Linked Implantable Hydrogels with Oxygenâ€Responsive Phosphorescence. Advanced Healthcare Materials, 2014, 3, 891-896.	7.6	46
96	Porphyrin–phospholipid liposomes permeabilized by near-infrared light. Nature Communications, 2014, 5, 3546.	12.8	282
97	A Porphodimethene Chemical Inhibitor of Uroporphyrinogen Decarboxylase. PLoS ONE, 2014, 9, e89889.	2.5	4
98	Opportunities for New Photodynamic Molecular Beacon Designs. , 2014, , 733-758.		0
99	Self-Assembled Porphyrin Nanodiscs with Structure-Dependent Activation for Phototherapy and Photodiagnostic Applications. ACS Nano, 2013, 7, 3484-3490.	14.6	112
100	Ablation of Hypoxic Tumors with Dose-Equivalent Photothermal, but Not Photodynamic, Therapy Using a Nanostructured Porphyrin Assembly. ACS Nano, 2013, 7, 2541-2550.	14.6	367
101	One Minute, Sub-One-Watt Photothermal Tumor Ablation Using Porphysomes, Intrinsic Multifunctional Nanovesicles. Journal of Visualized Experiments, 2013, , e50536.	0.3	10
102	Mechanistic Insights into LDL Nanoparticle-Mediated siRNA Delivery. Bioconjugate Chemistry, 2012, 23, 33-41.	3.6	49
103	Synthesis and Development of Lipoproteinâ€Based Nanocarriers for Lightâ€Activated Theranostics. Israel Journal of Chemistry, 2012, 52, 715-727.	2.3	6
104	Porphyrin Shell Microbubbles with Intrinsic Ultrasound and Photoacoustic Properties. Journal of the American Chemical Society, 2012, 134, 16464-16467.	13.7	171
105	Porphyrins as Theranostic Agents from Prehistoric to Modern Times. Theranostics, 2012, 2, 905-915.	10.0	126
106	Enzymatic Regioselection for the Synthesis and Biodegradation of Porphysome Nanovesicles. Angewandte Chemie - International Edition, 2012, 51, 2429-2433.	13.8	104
107	Optically Controlled Opening of Self-Sealing Giant Unilamellar Vesicles. , 2012, , .		0
108	Porphysomes: Intrinsically Multifunctional Nanovesicles for Photothermal Therapy., 2012,,.		0

#	Article	IF	CITATIONS
109	Porphysomes: Multifunctional Nanovesicles to Treat Hypoxic Tumour by Photothermal Therapy. , 2012, , .		0
110	Porphyrin FRET Acceptors for Apoptosis Induction and Monitoring. Journal of the American Chemical Society, 2011, 133, 18580-18582.	13.7	89
111	Porphyrin-Cross-Linked Hydrogel for Fluorescence-Guided Monitoring and Surgical Resection. Biomacromolecules, 2011, 12, 3115-3118.	5.4	75
112	Lipoprotein-Inspired Nanoparticles for Cancer Theranostics. Accounts of Chemical Research, 2011, 44, 1105-1113.	15.6	294
113	Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nature Materials, 2011, 10, 324-332.	27.5	1,219
114	Efficient Cytosolic Delivery of siRNA Using HDLâ€Mimicking Nanoparticles. Small, 2011, 7, 568-573.	10.0	81
115	Activatable Photosensitizers for Imaging and Therapy. Chemical Reviews, 2010, 110, 2839-2857.	47.7	1,483
116	Investigating the specific uptake of EGF-conjugated nanoparticles in lung cancer cells using fluorescence imaging. Cancer Nanotechnology, 2010, $1,71-78$.	3.7	20
117	HDLâ€Mimicking Peptide–Lipid Nanoparticles with Improved Tumor Targeting. Small, 2010, 6, 430-437.	10.0	122
118	Programmed Nanoparticle Aggregation Using Molecular Beacons. Angewandte Chemie - International Edition, 2010, 49, 7917-7919.	13.8	13
119	Facile Synthesis of Advanced Photodynamic Molecular Beacon Architectures. Bioconjugate Chemistry, 2010, 21, 1023-1025.	3.6	24
120	Biomimetic Nanocarrier for Direct Cytosolic Drug Delivery. Angewandte Chemie - International Edition, 2009, 48, 9171-9175.	13.8	150
121	FRET Quenching of Photosensitizer Singlet Oxygen Generation. Journal of Physical Chemistry B, 2009, 113, 3203-3211.	2.6	131
122	Bcl-XL Inhibits Membrane Permeabilization by Competing with Bax. PLoS Biology, 2008, 6, e147.	5.6	266
123	Membrane Binding by tBid Initiates an Ordered Series of Events Culminating in Membrane Permeabilization by Bax. Cell, 2008, 135, 1074-1084.	28.9	511
124	A tumor mRNA-triggered photodynamic molecular beacon based on oligonucleotide hairpin control of singlet oxygen production. Photochemical and Photobiological Sciences, 2008, 7, 775-781.	2.9	58
125	ACTIVATABLE SMART PROBES FOR MOLECULAR OPTICAL IMAGING AND THERAPY. Journal of Innovative Optical Health Sciences, 2008, 01, 45-61.	1.0	18