
Eric Petitclerc

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11736169/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ultraâ€small gadolinium oxide nanoparticles to image brain cancer cells <i>in vivo</i> with MRI. Contrast Media and Molecular Imaging, 2011, 6, 209-218.	0.8	84
2	Design, Synthesis, Biological Evaluation, and Structure–Activity Relationships of Substituted Phenyl 4-(2-Oxoimidazolidin-1-yl)benzenesulfonates as New Tubulin Inhibitors Mimicking Combretastatin A-4. Journal of Medicinal Chemistry, 2011, 54, 4559-4580.	6.4	55
3	Substituted phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonamides as antimitotics. Antiproliferative, antiangiogenic and antitumoral activity, and quantitative structure-activity relationships. European Journal of Medicinal Chemistry, 2011, 46, 5327-5342.	5.5	30
4	Quick and Simple Detection Technique to Assess the Binding of Antimicrotubule Agents to the Colchicine-Binding Site. Biological Procedures Online, 2010, 12, 113-117.	2.9	55
5	Synthesis, antiproliferative activity evaluation and structure–activity relationships of novel aromatic urea and amide analogues of N-phenyl-N′-(2-chloroethyl)ureas. European Journal of Medicinal Chemistry, 2010, 45, 2928-2937.	5.5	13
6	ASK1-P38 Pathway is Important for Anoikis Induced by Microtubule-Targeting Aryl Chloroethylureas. Journal of Pharmacy and Pharmaceutical Sciences, 2010, 13, 175.	2.1	11
7	Chloroethyl urea derivatives block tumour growth and thioredoxin-1 nuclear translocation. Canadian Journal of Physiology and Pharmacology, 2010, 88, 1102-1114.	1.4	6
8	Vascular smooth muscle contractility assays for inflammatory and immunological mediators. International Immunopharmacology, 2010, 10, 1344-1353.	3.8	17
9	On the ability of imatinib mesylate to inhibit smooth muscle cell proliferation without delaying endothelialization: An in vitro study. Vascular Pharmacology, 2009, 51, 50-56.	2.1	12
10	Receptor tyrosine kinases as mediators of injury-induced bradykinin B1 receptor expression in rabbit aortic smooth muscle. European Journal of Pharmacology, 2009, 606, 233-239.	3.5	5
11	Mechanism of action of N-phenyl-N′-(2-chloroethyl)ureas in the colchicine-binding site at the interface between α- and β-tubulin. Bioorganic and Medicinal Chemistry, 2009, 17, 3690-3697.	3.0	10
12	Tumor cells expressing tissue factor influence the migration of smooth muscle cells in a catalytic activity-dependent way. Canadian Journal of Physiology and Pharmacology, 2009, 87, 694-701.	1.4	8
13	Aromatic 2-chloroethyl urea derivatives and bioisosteres. Part 2: Cytocidal activity and effects on the nuclear translocation of thioredoxin-1, and the cell cycle progression. Bioorganic and Medicinal Chemistry, 2008, 16, 7477-7488.	3.0	8
14	Selective alkylation of βII-tubulin and thioredoxin-1 by structurally related subsets of aryl chloroethylureas leading to either anti-microtubules or redox modulating agents. Bioorganic and Medicinal Chemistry, 2008, 16, 7277-7290.	3.0	11
15	Cycloalkyl-substituted aryl chloroethylureas inhibiting cell cycle progression in G0/G1 phase and thioredoxin-1 nuclear translocation. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3526-3531.	2.2	13
16	New Soft Alkylating Agents with Enhanced Cytotoxicity against Cancer Cells Resistant to Chemotherapeutics and Hypoxia. Cancer Research, 2007, 67, 2306-2316.	0.9	26
17	Microtubule-Destabilizing Agents Induce Focal Adhesion Structure Disorganization and Anoikis in Cancer Cells. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 853-864.	2.5	33
18	Covalent Grafting of Fibronectin onto Plasma-Treated PTFE: Influence of the Conjugation Strategy on Fibronectin Biological Activity. Macromolecular Bioscience, 2007, 7, 738-745.	4.1	48

ERIC PETITCLERC

#	Article	IF	CITATIONS
19	Alkylation potency and protein specificity of aromatic urea derivatives and bioisosteres as potential irreversible antagonists of the colchicine-binding site. Bioorganic and Medicinal Chemistry, 2007, 15, 4456-4469.	3.0	30
20	Optimized N-phenyl-N′-(2-chloroethyl)ureas as potential antineoplastic agents: Synthesis and growth inhibition activity. Bioorganic and Medicinal Chemistry, 2005, 13, 6703-6712.	3.0	35
21	Role of the extracellular matrix proteins in the resistance of SP6.5 uveal melanoma cells toward cisplatin. International Journal of Oncology, 2005, 26, 405.	3.3	6
22	Loss of function of vascular smooth muscle cells by nitric oxide-dependent and -independent interactions with tumorigenic cells. International Journal of Cancer, 2004, 112, 830-839.	5.1	10
23	Engineering Surfaces for Bioconjugation:  Developing Strategies and Quantifying the Extent of the Reactions. Bioconjugate Chemistry, 2004, 15, 1146-1156.	3.6	51
24	Antiangiogenic and Antitumoral Activity of Phenyl-3-(2-Chloroethyl)Ureas. Cancer Research, 2004, 64, 4654-4663.	0.9	47
25	Plasminogen Activator Inhibitor-1 in Tumor Growth, Angiogenesis and Vascular Remodeling. Current Pharmaceutical Design, 2003, 9, 1545-1564.	1.9	155
26	Kinin receptors: functional aspects. International Immunopharmacology, 2002, 2, 1729-1739.	3.8	59
27	Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. Journal of Cell Biology, 2001, 154, 1069-1080.	5.2	445
28	Plasminogen Activator Inhibitor-1 Regulates Tumor Growth and Angiogenesis. Journal of Biological Chemistry, 2001, 276, 33964-33968.	3.4	235
29	Inhibition of Angiogenesis in Vivo by Plasminogen Activator Inhibitor-1. Journal of Biological Chemistry, 2001, 276, 8135-8141.	3.4	149
30	New Functions for Non-collagenous Domains of Human Collagen Type IV. Journal of Biological Chemistry, 2000, 275, 8051-8061.	3.4	294
31	Recombinant Human Hemoglobin Inhibits Both Constitutive and Cytokine-Induced Nitric Oxide-Mediated Relaxation of Rabbit Isolated Aortic Rings. Journal of Cardiovascular Pharmacology, 1994, 24, 229-237.	1.9	46
32	Epidermal growth factor-induced rapid relaxation of the isolated rabbit mesenteric artery. European Journal of Pharmacology, 1994, 259, 91-94.	3.5	6
33	Further analysis of the upregulation of bradykinin B1 receptors in isolated rabbit aorta by using metabolic inhibitors. European Journal of Pharmacology, 1994, 271, 551-555.	3.5	35
34	Synergism between the contractile effect of epidermal growth factor and that of desâ€Arg ⁹ â€bradykinin or of α.â€ŧhrombin in rabbit aortic rings. British Journal of Pharmacology, 1992, 105, 959-967.	5.4	40
35	Human interleukinâ€1 induces a rapid relaxation of the rabbit isolated mesenteric artery. British Journal of Pharmacology, 1991, 103, 1367-1372.	5.4	34