Makoto Furutani-Seiki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/11734141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The intracellular pathogen <i>Francisella tularensis</i> escapes from adaptive immunity by metabolic adaptation. Life Science Alliance, 2022, 5, e202201441.	2.8	6
2	Gravity sensing in plant and animal cells. Npj Microgravity, 2021, 7, 2.	3.7	32
3	Epigenetic Protection of Vertebrate Lymphoid Progenitor Cells by Dnmt1. IScience, 2020, 23, 101260.	4.1	7
4	ARHGAP29 expression may be a novel prognostic factor of cell proliferation and invasion in prostate cancer. Oncology Reports, 2020, 44, 2735-2745.	2.6	7
5	Studying YAP-Mediated 3D Morphogenesis Using Fish Embryos and Human Spheroids. Methods in Molecular Biology, 2019, 1893, 167-181.	0.9	1
6	Assessment of high fat diet-induced fatty liver in medaka. Biology Open, 2018, 7, .	1.2	5
7	<scp>YAP</scp> is essential for 3D organogenesis withstanding gravity. Development Growth and Differentiation, 2017, 59, 52-58.	1.5	6
8	YAP mediated mechano-homeostasis — conditioning 3D animal body shape. Current Opinion in Cell Biology, 2017, 49, 64-70.	5.4	4
9	Mutation in cpsf6/CFIm68 (Cleavage and Polyadenylation Specificity Factor Subunit 6) causes short 3'UTRs and disturbs gene expression in developing embryos, as revealed by an analysis of primordial germ cell migration using the medaka mutant naruto. PLoS ONE, 2017, 12, e0172467.	2.5	6
10	SLC7 family transporters control the establishment of left-right asymmetry during organogenesis in medaka by activating mTOR signaling. Biochemical and Biophysical Research Communications, 2016, 474, 146-153.	2.1	7
11	Evidence for a Role of the Transcriptional Regulator Maid in Tumorigenesis and Aging. PLoS ONE, 2015, 10, e0129950.	2.5	5
12	YAP is essential for tissue tension to ensure vertebrate 3D body shape. Nature, 2015, 521, 217-221.	27.8	237
13	Hippo pathway elements Co-localize with Occludin: A possible sensor system in pancreatic epithelial cells. Tissue Barriers, 2015, 3, e1037948.	3.2	9
14	The Hippo Pathway Controls a Switch between Retinal Progenitor Cell Proliferation and Photoreceptor Cell Differentiation in Zebrafish. PLoS ONE, 2014, 9, e97365.	2.5	43
15	Xmrkâ€induced melanoma progression is affected by Sdf1 signals through Cxcr7. Pigment Cell and Melanoma Research, 2014, 27, 221-233.	3.3	12
16	YAP and TAZ Regulate Skin Wound Healing. Journal of Investigative Dermatology, 2014, 134, 518-525.	0.7	188
17	A Novel Acetylation Cycle of Transcription Co-activator Yes-associated Protein That Is Downstream of Hippo Pathway Is Triggered in Response to SN2 Alkylating Agents. Journal of Biological Chemistry, 2012, 287, 22089-22098.	3.4	71
18	The Hippo pathway: key interaction and catalytic domains in organ growth control, stem cell self-renewal and tissue regeneration. Essays in Biochemistry, 2012, 53, 111-127.	4.7	7

#	Article	IF	CITATIONS
19	Essential Techniques for Introducing Medaka to a Zebrafish Laboratory—Towards the Combined Use of Medaka and Zebrafish for Further Genetic Dissection of the Function of the Vertebrate Genome. Methods in Molecular Biology, 2011, 770, 211-241.	0.9	13
20	Structural Features and Ligand Binding Properties of Tandem WW Domains from YAP and TAZ, Nuclear Effectors of the Hippo Pathway. Biochemistry, 2011, 50, 3300-3309.	2.5	68
21	Insufficiency of BUBR1, a mitotic spindle checkpoint regulator, causes impaired ciliogenesis in vertebrates. Human Molecular Genetics, 2011, 20, 2058-2070.	2.9	52
22	In Vivo Imaging of Tight Junctions Using Claudin–EGFP Transgenic Medaka. Methods in Molecular Biology, 2011, 762, 171-178.	0.9	2
23	A Systematic Screen for Mutations Affecting Organogenesis in Medaka. , 2011, , 59-77.		0
24	Dechorionation of Medaka Embryos and Cell Transplantation for the Generation of Chimeras. Journal of Visualized Experiments, 2010, , .	0.3	8
25	Retinoic acid signaling positively regulates liver specification by inducing <i>wnt2bb</i> gene expression in medaka. Hepatology, 2010, 51, 1037-1045.	7.3	28
26	Negative regulation of <i>wnt11</i> expression by Jnk signaling during zebrafish gastrulation. Journal of Cellular Biochemistry, 2010, 110, 1022-1037.	2.6	27
27	Microinjection of Medaka Embryos for use as a Model Genetic Organism. Journal of Visualized Experiments, 2010, , .	0.3	13
28	Medaka as a model for human nonalcoholic steatohepatitis. DMM Disease Models and Mechanisms, 2010, 3, 431-440.	2.4	59
29	The LIM protein Ajuba is required for ciliogenesis and left–right axis determination in medaka. Biochemical and Biophysical Research Communications, 2010, 396, 887-893.	2.1	12
30	Ethylnitrosoureaâ€induced thymusâ€defective mutants identify roles of <i>KIAA1440, TRRAP</i> , and <i>SKIV2L2</i> in teleost organ development. European Journal of Immunology, 2009, 39, 2606-2616.	2.9	10
31	Generation of transgenic medaka expressing claudin7-EGFP for imaging of tight junctions in living medaka embryos. Cell and Tissue Research, 2009, 335, 465-471.	2.9	6
32	Distinct contributions of CXCR4b and CXCR7/RDC1 receptor systems in regulation of PGC migration revealed by medaka mutants kazura and yanagi. Developmental Biology, 2008, 320, 328-339.	2.0	40
33	WDR55 Is a Nucleolar Modulator of Ribosomal RNA Synthesis, Cell Cycle Progression, and Teleost Organ Development. PLoS Genetics, 2008, 4, e1000171.	3.5	23
34	The <i>hotei</i> mutation of medaka in the anti-Müllerian hormone receptor causes the dysregulation of germ cell and sexual development. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 9691-9696.	7.1	234
35	Radiation Hybrid Maps of Medaka Chromosomes LG 12, 17, and 22. DNA Research, 2007, 14, 135-140.	3.4	5
36	Noninvasive Intravital Imaging of Thymocyte Dynamics in Medaka. Journal of Immunology, 2007, 179, 1605-1615.	0.8	41

#	Article	IF	CITATIONS
37	Proliferation of germ cells during gonadal sex differentiation in medaka: Insights from germ cell-depleted mutant zenzai. Developmental Biology, 2007, 310, 280-290.	2.0	132
38	The DNA sequence of medaka chromosome LG22. Genomics, 2007, 89, 124-133.	2.9	14
39	Generation of medaka gene knockout models by target-selected mutagenesis. Genome Biology, 2006, 7, R116.	9.6	137
40	Comparative genomic and expression analysis of group B1soxgenes in zebrafish indicates their diversification during vertebrate evolution. Developmental Dynamics, 2006, 235, 811-825.	1.8	152
41	Integrinα5-Dependent Fibronectin Accumulation for Maintenance of Somite Boundaries in Zebrafish Embryos. Developmental Cell, 2005, 8, 587-598.	7.0	165
42	Single cell lineage and regionalization of cell populations during Medaka neurulation. Development (Cambridge), 2004, 131, 2553-2563.	2.5	36
43	Zebrafish maternal-effect mutations causing cytokinesis defect without affecting mitosis or equatorial vasa deposition. Mechanisms of Development, 2004, 121, 79-89.	1.7	47
44	The Tomita collection of medaka pigmentation mutants as a resource for understanding neural crest cell development. Mechanisms of Development, 2004, 121, 841-859.	1.7	77
45	GSD: a genetic screen database. Mechanisms of Development, 2004, 121, 959-963.	1.7	6
46	Mutations affecting retina development in Medaka. Mechanisms of Development, 2004, 121, 703-714.	1.7	20
47	Genetic dissection of the formation of the forebrain in Medaka, Oryzias latipes. Mechanisms of Development, 2004, 121, 673-685.	1.7	17
48	Mutations affecting thymus organogenesis in Medaka, Oryzias latipes. Mechanisms of Development, 2004, 121, 779-789.	1.7	27
49	Mutations affecting retinotectal axonal pathfinding in Medaka, Oryzias latipes. Mechanisms of Development, 2004, 121, 715-728.	1.7	17
50	Mutations affecting early distribution of primordial germ cells in Medaka (Oryzias latipes) embryo. Mechanisms of Development, 2004, 121, 817-828.	1.7	22
51	Mutations affecting gonadal development in Medaka, Oryzias latipes. Mechanisms of Development, 2004, 121, 829-839.	1.7	29
52	Mutations affecting the formation of posterior lateral line system in Medaka, Oryzias latipes. Mechanisms of Development, 2004, 121, 729-738.	1.7	31
53	Identification of radiation-sensitive mutants in the Medaka, Oryzias latipes. Mechanisms of Development, 2004, 121, 895-902.	1.7	21
54	Mutations affecting somite formation in the Medaka (Oryzias latipes). Mechanisms of Development, 2004, 121, 659-671.	1.7	18

Makoto Furutani-Seiki

#	Article	IF	CITATIONS
55	Mutations affecting liver development and function in Medaka, Oryzias latipes, screened by multiple criteria. Mechanisms of Development, 2004, 121, 791-802.	1.7	35
56	A systematic genome-wide screen for mutations affecting organogenesis in Medaka, Oryzias latipes. Mechanisms of Development, 2004, 121, 647-658.	1.7	126
57	Medaka and zebrafish, an evolutionary twin study. Mechanisms of Development, 2004, 121, 629-637.	1.7	202
58	Current Status of Medaka Genetics and Genomics. Methods in Cell Biology, 2004, 77, 173-199.	1.1	8
59	Analysis of Wnt8 for neural posteriorizing factor by identifying Frizzled 8c and Frizzled 9 as functional receptors for Wnt8. Mechanisms of Development, 2003, 120, 477-489.	1.7	32
60	MEPD: a Medaka gene expression pattern database. Nucleic Acids Research, 2003, 31, 72-74.	14.5	23
61	Tbx24, encoding a T-box protein, is mutated in the zebrafish somite-segmentation mutant fused somites. Nature Genetics, 2002, 31, 195-199.	21.4	147
62	Zebrafish Dkk1, induced by the pre-MBT Wnt signaling, is secreted from the prechordal plate and patterns the anterior neural plate. Mechanisms of Development, 2000, 98, 3-17.	1.7	111
63	Mosaic analysis with oep mutant reveals a repressive interaction between floor-plate and non-floor-plate mutant cells in the zebrafish neural tube. Development Growth and Differentiation, 1999, 41, 135-142.	1.5	7
64	Mutations affecting pigmentation and shape of the adult zebrafish. Development Genes and Evolution, 1996, 206, 260-276.	0.9	164