Lawrence B Alemany

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1173412/publications.pdf

Version: 2024-02-01

39 papers 3,656 citations

20 h-index 330143 37 g-index

40 all docs

40 docs citations

40 times ranked

6533 citing authors

#	Article	IF	CITATIONS
1	New insights into the structure and reduction of graphite oxide. Nature Chemistry, 2009, 1, 403-408.	13.6	2,355
2	Zeolite MCM-49:Â A Three-Dimensional MCM-22 Analogue Synthesized byin SituCrystallization. The Journal of Physical Chemistry, 1996, 100, 3788-3798.	2.9	278
3	Birch Reduction of Graphite. Edge and Interior Functionalization by Hydrogen. Journal of the American Chemical Society, 2012, 134, 18689-18694.	13.7	112
4	Synthesis of Fluorinated Graphene Oxide and its Amphiphobic Properties. Particle and Particle Systems Characterization, 2013, 30, 266-272.	2.3	106
5	Characterization of partially saturated poly(propylene fumarate) for orthopaedic application. Journal of Biomaterials Science, Polymer Edition, 1997, 8, 893-904.	3.5	79
6	Synthesis and Characterization of a Block Copolymer Consisting of Poly(propylene fumarate) and Poly(ethylene glycol). Macromolecules, 1997, 30, 4318-4323.	4.8	57
7	Demonstration of covalent sidewall functionalization of single wall carbon nanotubes by NMR spectroscopy: Side chain length dependence on the observation of the sidewall sp3 carbons. Nano Research, 2008, 1, 72-88.	10.4	54
8	Capturing carbon dioxide as a polymer from natural gas. Nature Communications, 2014, 5, 3961.	12.8	51
9	Cross-Linking Amine-Rich Compounds into High Performing Selective CO2 Absorbents. Scientific Reports, 2015, 4, 7304.	3.3	42
10	Molecular Nanomachines Disrupt Bacterial Cell Wall, Increasing Sensitivity of Extensively Drug-Resistant <i>Klebsiella pneumoniae</i> to Meropenem. ACS Nano, 2019, 13, 14377-14387.	14.6	42
11	Elevated Conformational Rigidity in Dipeptides Incorporating Piperazic Acid Derivatives. Journal of the American Chemical Society, 1998, 120, 80-86.	13.7	40
12	Structural Dislocations in Anthracite. Journal of Physical Chemistry Letters, 2011, 2, 2521-2524.	4.6	40
13	Near-Infrared Light Activates Molecular Nanomachines to Drill into and Kill Cells. ACS Nano, 2019, 13, 6813-6823.	14.6	39
14	Enhancement of crystallinity of imine-linked covalent organic frameworks <i>via</i> aldehyde modulators. Polymer Chemistry, 2020, 11, 4464-4468.	3.9	33
15	Enantioselective Catalytic Allylation of Acyclic Ketiminoesters: Synthesis of α-Fully-Substituted Amino Esters. Organic Letters, 2019, 21, 9208-9211.	4.6	31
16	Investigations of Coronatine Biosynthesis. Elucidation of the Mode of Incorporation of Pyruvate into Coronafacic Acid. Journal of the American Chemical Society, 1996, 118, 703-704.	13.7	29
17	Light-activated molecular machines are fast-acting broad-spectrum antibacterials that target the membrane. Science Advances, 2022, 8, .	10.3	28
18	Rapid, Ambient Temperature Synthesis of Imine Covalent Organic Frameworks Catalyzed by Transition-Metal Nitrates. Chemistry of Materials, 2021, 33, 3394-3400.	6.7	26

#	Article	IF	CITATIONS
19	Using simple 13C NMR linewidth and relaxation measurements to make detailed chemical shift assignments in triacylglycerols and related compounds. Chemistry and Physics of Lipids, 2002, 120, 33-44.	3.2	24
20	Solid- and Solution-State Nuclear Magnetic Resonance Analyses of Ecuadorian Asphaltenes: Quantitative Solid-State Aromaticity Determination Supporting the "Island―Structural Model. Aliphatic Structural Information from Solution-State ¹ H– ¹³ C Heteronuclear Single-Quantum Coherence Experiments. Energy & Fuels, 2015, 29, 6317-6329.	5.1	20
21	Thermolysis of Free-Radical Initiators:Âtert-Butylazocumene and Its 1,3- and 1,4-Bisazo and 1,3,5-Trisazo Analogues. Journal of the American Chemical Society, 2001, 123, 3706-3715.	13.7	18
22	Total Synthesis and Full Structural Assignment of Namenamicin. Journal of the American Chemical Society, 2018, 140, 8091-8095.	13.7	18
23	Bulk Production of Any Ratio ¹² C: ¹³ C Turbostratic Flash Graphene and Its Unusual Spectroscopic Characteristics. ACS Nano, 2021, 15, 10542-10552.	14.6	17
24	Solid-State 29Si NMR Analysis of Cements:  Comparing Different Methods of Relaxation Analysis for Determining Spinâ^Lattice Relaxation Times to Enable Determination of the C3S/C2S Ratio. Industrial & Lamp; Engineering Chemistry Research, 2007, 46, 5122-5130.	3.7	15
25	Photoenhanced transformation of hydroxylated fullerene (fullerol) by free chlorine in water. Environmental Science: Nano, 2017, 4, 470-479.	4.3	14
26	Reductive Alkylation of Anthracite: Edge Functionalization. Energy & Energy & 2011, 25, 3997-4005.	5.1	11
27	Structural Studies of Hydrographenes. Accounts of Chemical Research, 2017, 50, 1351-1358.	15.6	10
28	Synthesis of Structurally Diverse 3-, 4-, 5-, and 6-Membered Heterocycles from Diisopropyl Iminomalonates and Soft <i>C</i> -Nucleophiles. Journal of Organic Chemistry, 2019, 84, 7066-7099.	3.2	10
29	Metal-Free Sulfonate/Sulfate-Functionalized Carbon Nitride for Direct Conversion of Glucose to Levulinic Acid. ACS Sustainable Chemistry and Engineering, 2022, 10, 6230-6243.	6.7	10
30	Simple organofluorine compounds giving fieldâ€dependent ¹³ C and ¹⁹ F NMR spectra with complex patterns: higher order effects and crossâ€correlated relaxation. Magnetic Resonance in Chemistry, 2010, 48, 882-891.	1.9	8
31	Structural Characteristics and Properties of a New Graphiticâ€Based Material. Chemistry - A European Journal, 2016, 22, 1452-1460.	3.3	8
32	Predicting ¹ H NMR relaxation in Gd ³⁺ -aqua using molecular dynamics simulations. Physical Chemistry Chemical Physics, 2021, 23, 20974-20984.	2.8	8
33	Dodecylated Large Fullerenes: An Unusual Class of Solids. Chemistry of Materials, 2008, 20, 5513-5521.	6.7	7
34	High-Strength, Microporous, Two-Dimensional Polymer Thin Films with Rigid Benzoxazole Linkage. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1861-1873.	8.0	7
35	A Dual Catalyst Strategy for Controlling Aluminum Nanocrystal Growth. Nano Letters, 2022, 22, 5570-5574.	9.1	4
36	Additional insights from veryâ€highâ€resolution ¹³ C NMR spectra of longâ€chain <i>n</i> å€alkanes. Magnetic Resonance in Chemistry, 2013, 51, 605-613.	1.9	2

#	Article	IF	CITATIONS
37	Birch Reduction of Asphaltenes. Synthesis of Hydroasphaltenes. Energy & Ene	5.1	2
38	The Synthesis and Characterization of a Novel Block Copolymer Consisting of Poly(Propylene) Tj ETQq0 0 0 rgBT /	Oyerlock 1	10 Tf 50 702
39	NMR at the University of St. Thomas (TX): Cooperation and Collaboration with Rice University. ACS Symposium Series, 2016, , 93-126.	0.5	O